
FaunaDB
Global Consistency at High Throughput

Matt Freels, CTO and Cofounder
HPTS 2017

© Fauna, Inc. 2017

FaunaDB: Summary

• OLTP database (soft-realtime or interactive workloads)

• Written in Scala, runs on JVM

• NoSQL, hybrid data model

• eDSL-based query language (closer to general purpose PL)

• Multi-key ACID transactions

• Multi-region replication

• Cloud-native (network, hardware assumptions)

2

© Fauna, Inc. 2017

Functional Transaction Language

Create(Class("users"),
 Obj("data" -> Obj("name" -> "Matt"))
)

Let {
 val set = Match(Index("users_by_name"), "Matt")
 Paginate(set)
}

3

© Fauna, Inc. 2017

Data Model

• Instances organized by class

• Indexes are first-class

• Map instances to partitioned, sorted sets of tuples

• Immutable, temporal by default

4

© Fauna, Inc. 2017

Underlying Algorithms

Used for distributed multi-key transaction resolution

• Strict serializability

• Well-suited for multi-region environment

• Local region snapshot reads

• No special hardware requirements

• Modular architecture

Calvin

5

© Fauna, Inc. 2017

Underlying Algorithms

• Transactions == pure functions

• predetermined read-write set

• Partitioned log determines transaction order

• Order reflected in transaction timestamps

• Data partitions apply transactions independently by region

• Temporal storage allows for looser coupling

• Last applied transaction timestamp determines safe snapshot reads

Calvin

6

© Fauna, Inc. 2017

Life of a Transaction

Let {
 val matt = Get(Match(Index("users_by_name"), "Matt"))

 Update(
 Select("ref", matt),
 Obj("data" -> Obj("status" -> "At HPTS")
)
}

7

© Fauna, Inc. 2017 8

© Fauna, Inc. 2017 9

© Fauna, Inc. 2017

Life of a Transaction

Snapshot time: t12

Reads:

 [Match(Index("users_by_name"), "Matt")), t6]

 ["users/123", t6]

Writes:

 ["users/123", { "data": { "name": "Matt", "status": "At HPTS" } }]

10

© Fauna, Inc. 2017 11

© Fauna, Inc. 2017 12

© Fauna, Inc. 2017 13

© Fauna, Inc. 2017 14

© Fauna, Inc. 2017 15

© Fauna, Inc. 2017 16

© Fauna, Inc. 2017 17

© Fauna, Inc. 2017 18

© Fauna, Inc. 2017

Life of a Transaction

Transaction time: (2, a, 2/3) → (2, 2/6) → t25

Reads:

 [Match(Index("users_by_name"), "Matt")), t6]

 ["users/123", t6]

Writes:

 ["users/123", { "data": { "name": "Matt", "status": "At HPTS" } }]

19

© Fauna, Inc. 2017 20

© Fauna, Inc. 2017

Read-only Transactions

• Relaxed consistency by default (Still serializable)

• Transaction timestamp acts as a causal token

• Snapshot read clock informed by transaction apply latency

21

© Fauna, Inc. 2017

Underlying Algorithms

• Core internal replication primitive

• Used to replicate:

• Shared cluster state

• Calvin transaction log

RAFT

22

© Fauna, Inc. 2017

Underlying Algorithms

Improvements over reference implementation:

• Pipelined appends

• Better election protocol resiliency

• Minority cannot trigger an election

• Faster elections (not timeout-dependent)

• Reduced WAN communication overhead

• Allow reads from any replica

• Broadcasted acceptance & peer-based commit

RAFT

23

© Fauna, Inc. 2017

Performance Characteristics

• 500-5000 write TPS/node, depending on fanout

• 100-200ms write latencies in global cluster

• Degree of contention between transactions affects throughput, higher rate of

transaction failure/retry

• Theoretical maximum number of log partitions (ergo throughput) per database

24

© Fauna, Inc. 2017

Future Work

• Selectable read consistency (strictly serializable reads)

• Selectable write consistency (tentative response)

• Richer transaction semantics (fewer aborts under contention)

• Transaction reordering

• Generalized at-most-once transactions

25

© Fauna, Inc. 2017

Thank You!
Contact:

matt@fauna.com

26

mailto:matt@fauna.com

