Projects Since HPTS 2015

Charlie Johnson
(and interns and others)

HPTS 15

I’'m going down!

(How to recover from failure in
milliseconds)

Charlie Johnson

Availability depends upon Time to Recover
 Mean Time Between Failures (MTBF) is important.
 Mean Time to Recover (MTR) is much more important.

* Availability = A = MTBE / (MTBF + MTR)

* lim(Availability) =1
MTR -> 0

e Asthe Mean Time to Recover decreases,
Availability approaches 100%

e .. Probability of Failure=F=1-A=0

* .. Reliability = 1/F = 1/(1-A) = inf

* HPE Nonstop has implemented this and now does node
takeovers in milliseconds: called “CPU Broadcast”: by

hacking the NMI driver to send out a death multicast
message. They now have the fastest takeover in the world.

TXHPC at NVMW 2017

PERSISTENT REGIONS THAT SURVIVE
NVM MEDIA FAILURES

Onkar Patil, Mesut Kuscu, Tuan Tran, Charles Johnson, Joseph Tucek,
Harumi Kuno

Hewlett Packard Labs, Palo Alto, CA
NVMW 2017

What are the details?

Take Six: Software RAID 6 [10 shelves on separate Zbridges on one ZSwitch: 8 + 2 parity] at ~“20% cost,
1. Stripes must ba using a “free band gap” (concurrency sized) and stripe iteration through the arrays, as if the data were
atomically written, but moving up an escalator through the FAM (with much less overhead and work than Take Five.)

NOT update-in-place (the
poison apple), so there ! ; ,
needs to be a free band /
gap to accommodate
concurrency. This implies

that all array access
):’ l’:a' e
needs to get on the i ——C /:E?’ g ’z.::r'

stripe escalator at the Data Data Data Data Data Data Datas Parity Parity

appropriate point and 1 F ree St rl 0 e G a]

“Mind The Gap”.
Data Dats Data Data Parlry Parity
FAM failures are . ._"/
recoverad by ' j
././.V./.!‘-/.Y././.
‘&

FAM
yet— 4 Shelves

—

SoC node or
process
failures are
recovered by
redoing the

reconstructing lost

data or parity onto
a spare shelf, or

simaly in DAt tor ISP SRR/ N A/ S/ S/ S/ Sy / /| oA
the demo -/-f-/./././././-_ progress and

proceeding

- l‘ e 11, 'l) 1;

FAM ’/

Stripes

/ /

/ _‘r,'/' 1/ 1/ // ;1 d

4
%1 141 A 1 A

4. Then each iteration
through all the arrays (a step)
is completed by iterating
FAM | 2. Using the page size of 4096 for the FAM Data Block, you get | 1o through the stripes.

Data | 512 64-bit floating or integer array elements, and then 4096 of | p arity
Block |said array elements per stripe for thread parallel data and parity | gjock 3. That leaves two to three hyperthreads (out of 4) per core for

computation in cores (one FPU and one Integer Unit per core) executing non-temporal (hopefully) load and store instructions
Sagwm oy Oere seeece

TXHPC presentation and code

Two-page abstract:
http://nvmw.ucsd.edu/2017/assets/abstracts/20

Slides:
http://nvmw.ucsd.edu/2017/assets/slides/20

Open source github:
https://github.com/HewlettPackard/Redhead

TxHPC source (uses Jerasure 2.0 + GKComplete):
https://github.com/HewlettPackard/Redhead/tree/master/include/StencilForTxHPC/TxHPC4TM

http://nvmw.ucsd.edu/2017/assets/abstracts/20
http://nvmw.ucsd.edu/2017/assets/slides/20
https://github.com/HewlettPackard/Redhead
https://github.com/HewlettPackard/Redhead/tree/master/include/StencilForTxHPC/TxHPC4TM

Nonstop SQL Subtransactions

Nonstop clustered group 3-phase commit is the slowest in the
business, response time in 10s of ms. at best for standard
configurations.

They used to have 90% of the trading business, only a couple
of exchanges left: this is because all flash trading completes
for the front-running and arbitrage of a single trade in 15 ps.

1n 1999 came up with a solution, presented to HPTS, but the
problem wasn’t pressing, then.

Now it’s an issue, so | was called in to fix the Nonstop commit
code that | designed and wrote (with much help from Pat,
Shel, Jimbo, Matt M., J. Carley, J. Klein, etc.)

With SQL Subtransactions, we could get 4 orders of
magnititude, with H/W work maybe another 2-3 orders in
both throughput and response time (Big €2.)

Single Record Insert on a 12 cpu Nonstop
with 11 ADPs using TMF transactions

* It's completely scaled out and bullet
proof.

* That translates to slow.

* There are lot of waited steps in RED.

* The part in BLUE could be very fast if we
could just execute that part.

* We need a new transaction type that fits
into the old transaction recovery system:
SQL subtransactions.

* They need a new delivery system: a
special message as a top-level
transaction.

* They need to execute completely within
a single disk process instance, call it a
DPX.

* They need collocation to a single
processor cache hierarchy to reduce
response time.

* They need all resources to be confined to
a single disk process.

* They need buffering/multiplexing to
increase efficiency and throughput.

* They need to be ACID and the same level
of high availability as TMF transactions.

* They need to be as programmable as
TMF transactions, modulo the issues of
closure on collocated resources.

Application
Begin Transaction el
BOwn Begin In Tmp Pair o
(Parallel Libgram waits for the slowest ack)
\‘\
BOwn Begin Elsewhere =
A 4 (Parallel Libgram waits for the slowest ack)
Application Application insert record [
Work (thread waited) B

Racing alongside active tra
commit, is the streaming
the aux may be flushed alr

DP2 checkpoint ahead WAL
(DP2 serialized)
DP2 VSN WAL flush
(DP2 serialized)

DP2 WAL Flushing

Aux ADP driver mirrored write

a2 = (ADP serialized parallel wait
2 g_ for the slowest ack)
Y o<
Application ?’. -5"'\ BOwn End Transaction BCast =
End Transaction | # = (LibGram parallel wait for the slowest reply)
g ; BOwn send flush responses to Tmp Pri Cpu

(LibGram caller waits for lock release) .

—

3——.-—-

it Tmp checkpoint tx result 1
{tx usermode thread waited) =
Tmp Flush Auxes IF
(group commit waited) g
Tmp Commit Write to MAT 'l

(group commit waited) L
=

—
=
o
(o]
E

w
<

MAT ADP driver mirrored write
(MAT serialized parallel wait
for the slowest ack)

Tmp Commit Write to MAT il
Y (group commit waited) P

Response Tmp Pri Cpu sends lock release to BOwn =
Time for tx (LibGram causes the reply to the application)
BOwn Lock Release BCast . =
v (LibGram parallel wait for the slowest reply)

Tmp checkpoint tx termination

Tk Seminaton (tx usermode thread nowaited)

—

Network Hops

—send—> 3

& TmpPriCpu
< ‘:C“kd' . TmpBkpCpu
¢ ngxsae:kd: 9 other Cpus

——send—> DP2Primary {changes to
<—reply—— ACTTX data structures)

actions in the TMF group
: DP2 primary, such that

VSN from a specific DP2
ckpt—>
«—repl DP2 Backup
——Juxwrite Aux ADP Primary
<€—reply— (into ring buffer)
—Write— 9
¢ ack ADP HDD mirror
"Y;(’l:() ADP HDD mirrox
—11x send> All 11 non-
“11x ack— BOwn Cpus
—send—> TmpPriCpu
—tkpt—>-
4__,9:. Tmp Backup
—=11x send> 11 ADPs (Let's assume
<11xreply— they're already flushed)
——send—> Master Audit Trail
—Write=—P= MAT HDD mirror (+ time for

4——ack—— head positioning and rotation)

—rite=P= MAT HDD mirror (+ time for
<4——ack——— head positioning and rotation)
<—reply—— Master Audit Trail
—tnd—> Bown cpu
—2x send—> DP2PriCpu
<—2x ack— DP2BkpCpu
—ckpt—>

<—reply— Tmp Backup

e SQL Subtransactions has reached detailed
design, 3™ revision of the spec awaiting a spot
in the very busy Nonstop software
development schedule (currently supporting
the new Virtualized Nonstop VM on x86 64
for Gen9 hardware.)

* On to the next project that advances the state
of the art of resilience.

