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Availability depends upon Time to Recover
 Mean Time Between Failures (MTBF) is important.
 Mean Time to Recover (MTR) is much more important.

* Availability = A = MTBE / (MTBF + MTR)

* lim(Availability) =1
MTR -> 0

e Asthe Mean Time to Recover decreases,
Availability approaches 100%

e .. Probability of Failure=F=1-A=0

* .. Reliability = 1/F = 1/(1-A) = inf

* HPE Nonstop has implemented this and now does node
takeovers in milliseconds: called “CPU Broadcast”: by

hacking the NMI driver to send out a death multicast
message. They now have the fastest takeover in the world.



TXHPC at NVMW 2017

PERSISTENT REGIONS THAT SURVIVE
NVM MEDIA FAILURES
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What are the details?

Take Six: Software RAID 6 [10 shelves on separate Zbridges on one ZSwitch: 8 + 2 parity] at ~“20% cost,
1. Stripes must ba using a “free band gap” (concurrency sized) and stripe iteration through the arrays, as if the data were
atomically written, but moving up an escalator through the FAM (with much less overhead and work than Take Five.)
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4. Then each iteration
through all the arrays (a step)
is completed by iterating
FAM | 2. Using the page size of 4096 for the FAM Data Block, you get | 1o through the stripes.

Data | 512 64-bit floating or integer array elements, and then 4096 of | p arity
Block |said array elements per stripe for thread parallel data and parity | gjock 3. That leaves two to three hyperthreads (out of 4) per core for
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TXHPC presentation and code

Two-page abstract:
http://nvmw.ucsd.edu/2017/assets/abstracts/20

Slides:
http://nvmw.ucsd.edu/2017/assets/slides/20

Open source github:
https://github.com/HewlettPackard/Redhead

TxHPC source (uses Jerasure 2.0 + GKComplete):
https://github.com/HewlettPackard/Redhead/tree/master/include/StencilForTxHPC/TxHPC4TM



http://nvmw.ucsd.edu/2017/assets/abstracts/20
http://nvmw.ucsd.edu/2017/assets/slides/20
https://github.com/HewlettPackard/Redhead
https://github.com/HewlettPackard/Redhead/tree/master/include/StencilForTxHPC/TxHPC4TM

Nonstop SQL Subtransactions

Nonstop clustered group 3-phase commit is the slowest in the
business, response time in 10s of ms. at best for standard
configurations.

They used to have 90% of the trading business, only a couple
of exchanges left: this is because all flash trading completes
for the front-running and arbitrage of a single trade in 15 ps.

1n 1999 came up with a solution, presented to HPTS, but the
problem wasn’t pressing, then.

Now it’s an issue, so | was called in to fix the Nonstop commit
code that | designed and wrote (with much help from Pat,
Shel, Jimbo, Matt M., J. Carley, J. Klein, etc.)

With SQL Subtransactions, we could get 4 orders of
magnititude, with H/W work maybe another 2-3 orders in
both throughput and response time (Big €2.)



Single Record Insert on a 12 cpu Nonstop
with 11 ADPs using TMF transactions

* It's completely scaled out and bullet
proof.

* That translates to slow.

* There are lot of waited steps in RED.

* The part in BLUE could be very fast if we
could just execute that part.

* We need a new transaction type that fits
into the old transaction recovery system:
SQL subtransactions.

* They need a new delivery system: a
special message as a top-level
transaction.

* They need to execute completely within
a single disk process instance, call it a
DPX.

* They need collocation to a single
processor cache hierarchy to reduce
response time.

* They need all resources to be confined to
a single disk process.

* They need buffering/multiplexing to
increase efficiency and throughput.

* They need to be ACID and the same level
of high availability as TMF transactions.

* They need to be as programmable as
TMF transactions, modulo the issues of
closure on collocated resources.
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e SQL Subtransactions has reached detailed
design, 3™ revision of the spec awaiting a spot
in the very busy Nonstop software
development schedule (currently supporting
the new Virtualized Nonstop VM on x86 64
for Gen9 hardware.)

* On to the next project that advances the state
of the art of resilience.



