
Projects Since HPTS 2015

Charlie Johnson

(and interns and others)

HPTS ‘15

Availability depends upon Time to Recover
 • Mean Time Between Failures (MTBF) is important.

• Mean Time to Recover (MTR) is much more important.

• Availability = A = MTBF / (MTBF + MTR)

• lim(Availability) ≈ 1
 MTR -> 0

• As the Mean Time to Recover decreases,
Availability approaches 100%

•  Probability of Failure = F = 1-A ≈ 0

•  Reliability = 1/F = 1/(1-A) ≈ inf

• HPE Nonstop has implemented this and now does node
takeovers in milliseconds: called “CPU Broadcast”: by
hacking the NMI driver to send out a death multicast
message. They now have the fastest takeover in the world.

TxHPC at NVMW 2017

Stripe

TxHPC presentation and code

• Two-page abstract:
http://nvmw.ucsd.edu/2017/assets/abstracts/20

• Slides:
http://nvmw.ucsd.edu/2017/assets/slides/20

• Open source github:
https://github.com/HewlettPackard/Redhead

• TxHPC source (uses Jerasure 2.0 + GKComplete):
https://github.com/HewlettPackard/Redhead/tree/master/include/StencilForTxHPC/TxHPC4TM

http://nvmw.ucsd.edu/2017/assets/abstracts/20
http://nvmw.ucsd.edu/2017/assets/slides/20
https://github.com/HewlettPackard/Redhead
https://github.com/HewlettPackard/Redhead/tree/master/include/StencilForTxHPC/TxHPC4TM

Nonstop SQL Subtransactions
• Nonstop clustered group 3-phase commit is the slowest in the

business, response time in 10s of ms. at best for standard
configurations.

• They used to have 90% of the trading business, only a couple
of exchanges left: this is because all flash trading completes
for the front-running and arbitrage of a single trade in 15 µs.

• 1n 1999 came up with a solution, presented to HPTS, but the
problem wasn’t pressing, then.

• Now it’s an issue, so I was called in to fix the Nonstop commit
code that I designed and wrote (with much help from Pat,
Shel, Jimbo, Matt M., J. Carley, J. Klein, etc.)

• With SQL Subtransactions, we could get 4 orders of
magnititude, with H/W work maybe another 2-3 orders in
both throughput and response time (Big .)

8

Single Record Insert on a 12 cpu Nonstop
with 11 ADPs using TMF transactions

• It’s completely scaled out and bullet

proof.
• That translates to slow.
• There are lot of waited steps in RED.
• The part in BLUE could be very fast if we

could just execute that part.
• We need a new transaction type that fits

into the old transaction recovery system:
SQL subtransactions.

• They need a new delivery system: a
special message as a top-level
transaction.

• They need to execute completely within
a single disk process instance, call it a
DPX.

• They need collocation to a single
processor cache hierarchy to reduce
response time.

• They need all resources to be confined to
a single disk process.

• They need buffering/multiplexing to
increase efficiency and throughput.

• They need to be ACID and the same level
of high availability as TMF transactions.

• They need to be as programmable as
TMF transactions, modulo the issues of
closure on collocated resources.

• SQL Subtransactions has reached detailed
design, 3rd revision of the spec awaiting a spot
in the very busy Nonstop software
development schedule (currently supporting
the new Virtualized Nonstop VM on x86_64
for Gen9 hardware.)

• On to the next project that advances the state
of the art of resilience.

