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ABSTRACT A high throughput persist

Wo present FlashStore, a high throughput, persistent key-
value store, that uses flash memory as a non-volatile cache
botween RAM and hard disk. FlashStore is designed to
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Abstract

‘We present Masstree, a fast key-value database designed for
SMP machines. Masstree keeps all data in memory. [ts main
data structure is a trie-like concatenation of B* -trees, each of
which handles a fixed-length slice of a variable-length key.
This structure effectively handles arbitrary-length possibly-

sufficiently fast single servers. A common route o high per-
formance is to use different specialized storage systems for
different workloads [4]

This paper presents Masstree, a slorage system special-
ized for key-value data in which all data fits in memeory, but
must persist across server restarts. Within these constraints,
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RocksDB is versatile



RocksDB Application Diversity

* Inside Facebook:
* MyRocks: MySQL Engine
* ZippyDB: distributed Key-value store
* Laser: data publishing service
* Dragon: distributed graph query engine
* LogDevice: distributed data store for logs
* Stylus: stream processing framework



Workload Diversity
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Document Store Example: Tao object

* TAO: Facebook’s Distributed Data Store for the Social Graph

¢ Sample ObjeCt3 '‘timestamp’ => 1505514049,

'author' => 100008855205466,

'message_type'=> 308,

'body' => 'Performance results for load, create index and table scan for ......
'gid' => 530977083778847,

'lang' => 'en’,

'creator_id' => 100008855205466,

'detected_dialect' => 'en_XX',

'detected_dialect_confidence' => 100,

'modified_time' => 1505514292,



Tao Object: Operation Ratio

Get Add Update Delete



Tao Object: Object Size

Number of Bytes
Mean 168
Median 78
P75 246
P90 441
P95 733
P99 1688




Document encoding

e Customized Format

* C++ struct

* Thrift (RPC Protocol) struct
e JSON/BSON



Workload

* Point lookup only
* Balance Read/write.



Update a small subset of attributes?

* Read-modify-write: read optimized

* Blindly write delta and merge in read: write optimized
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Example: Tao “associations”

Alice was at the Golden Gate Bridge with Bob

Cathy : Wish we were there! David likes this

id: 534, otype: LOCATION
name: Golden Gate Bridge

[ id: 105, otype: USER
loC: 3749 117N, 122°28'43"W

name:; Alice

18

[ id: 244, otype: USER

N

name: Bob

@ | ‘a .| id: 632, otype: CHECKIN

Zlol =)

=2 22 =
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id: 771, otype: COMMENT

PR text: Wish we were there!

[ id: 471, otype: USER




FB page => admin

* Key: [page_id, user_id]

* Value: [update_time, is_deleted...]

* Common Query: find admins of a page of page_id:
* Scan keys in the range prefixed with page_id



Number of Edges Per Vertex

Number of Edges
Mean 3.85
Median 1
P75 1
P95 3
P99 22

Optimization: bloom filter using range prefix




Tao associations: Operation Ratio

...

check edge get edges from a add edge delete edge update edge
existence vertex




Ranked Comments of a post

* Key: [post_id, language_id, ranking_score, comment_id]
* Value: (empty)
* Common Query: find top ranked comments of post_id:

* Scan the first N keys between
| post_id, viewer_language, min_score] to [... max_score]
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Example: Recent Time-Ordered Events

* Key: [user_id, event_timestamp | with timestamp in reverse

order
* Value: some metadata of the event.
* Read Query: range scan between [user_id, max_ts] to

[user_id, min_ts] limit N



Workload of the example

* Write/Read 63:1
* Average keys per range query: ~1,100
* Average value size per key: 230 bytes



Retire Old Time-Ordered Events

e Time-Ordered Events should retire if
* |t is too old

* Too many Time-Ordered Events from a user

* Solution: compaction filter
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Counter Service

* Key: counter_ia

* Value: the counter. Common counter types:
* Plain count
* Unique count (using hyperloglog)
* Auto-decaying Counter Service

* Usually update heavily



Delta Updates (merge operator)
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Workload in one use case

* 180K key updates + 19K keys read per second per host
* Average key-update size 26 bytes

* How many delta entries to merge when read:
* Median: 7
* P90: 801
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Storage For Logs

* Key: [logging_id, seq_id] where seqg_id is incremental

* Value: message contents

* Common Query: range scan from [logging_id,
last_seen_seq_id] for all keys of logging_id.

* Write-heavy, most reads are against recent updates.

* Older data is deleted.



Example: A LogDevice Use Case

* For a host:
* 260K keys inserted per second
* 350K keys read per second
* Every read gets 1.13 keys
* Average log size 80 bytes
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RocksDB as a Cache: an example

Fill the cache

Cache in DRAI\/I

Eviction

Refill

Cache on SSD



RocksDB as a Cache: an example

e Put()/Get() only. ';':;ft’:
* 3.4K write/s, 14K read/s per host Mean 429
* Hit rate about 13% Median 141
* Write heavy, sometimes read heavy too. P95 340
* Evict old data in FIFO. P99 4000




RocksDB as a Cache:
Some Tuning Experience

* Minimize compaction
* Be careful about bloom filter false positive rate

Drop oldest data directly

Key and value should be stored separately for large values.
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Common Workload Pattern



Key Length Distribution

Probability Density
o o




Key + Value Length Distribution

K+V length
(Bytes) ‘Sa
Mean 369
Median 59 :
P75 216 E
P90 1.68K
P95 2.75K
P99 12.2K




Number of Keys Per Range Query

tkeys
updated per
write
Mean 176
Median 2
P75 8
P95 732
P99 3.67K

o
‘pon
=




Number of Keys Updated Per Writex

ttkeys
updated per
write
Mean 10.8 i
Median 1 L
P95 10
P99 250




Take-Away

e RocksDB is versatile:
* Diversified Applications
e Diversified Workloads



Thank You!




