Workload Diversity with
RocksDB

Siying Dong, Database Engineering Team, Facebook
Oct 9, 2017

Key-Value Stores are Popular

W Key-value database - Wi~ x

e

& C 0

@ Secure | https://en.wikipedia.org/wiki/Key-value_database

Q w

apm

KV - eventually consistent [edit]

Dynamo
Cassandra

Oracle NoSQL Database
Project Voldemort
Riaki?!

OpenLink Virtuoso.

KV —ordered [edi]

Berkeley DB
FairCom c-treeACE/c-treeRTG
FoundationDB

HyperDex

IBM Informix C-ISAM
InfinityDB

LMDB

MemcacheDB

KV —RAM |edit]

Aerospike
Apache Ignite
Coherence
FairCom c-treeACE
GridGain Systems
Hazelcast
memcached
OpenLink Virtuoso
Redis

XAP

KV - solid-state drive or rotating disk [edit]

Aerospike
coe

Clusterpeint Database Server

Couchbase Server

FairCom c-treeACE

GTME

Hibari

Keyspace

LevelDB

LMDB

MemcacheDB (using Berkeley DB or LMDB)
NoSQlz

Coherence

Oracle NoSQL Database

quasardb

RocksDB (fork of LevelDB)

OpenLink Virtuoso

Tarantool

Tokyo Cabinet and Kyoto Cabinet

Tuple space

References [eait

m}

1 A it jidh,

X

https://creativecommons.org/licenses/by-sa/3.0/

In Proceedings of the 23rd ACM Symposiian on Operating Sysiems Principles (SOSP 1)
This version is reformatied from the official version that appears in the conference proceedings.

SILT: A Memory-Efficient, High-Performance Key-Value Store

Hyeontaek Lim', Bin Fan', David G. Andersen', Michael Kaminsky*

!Carnegie Mellon University, *Intel Labs

An Efficient Design and Implementation of

2008 — 2011 Increase
731 = 1LITOM 60 %

r 0062 = 0153 GRS 147 %
0.134 — 0428 GB/S 29%
492+ 151 GBS 207 %

¥ to 2011, flash and hard disk capacity
*r than either CPU transistor count or

LSM-Tree based Key-Value Store on Open-Channel SSD

Peng Wang

Peking University
{wang_peng, gsun}@pku edu.cn

HyperDex: A Distributed, Searchable Key-Value Store

Robert Escriva
Computer Science
Department
Cornell Universi(r
escriva@cs.cornell.ed

ABSTRACT

Distributed key-value stores are now a s
of high-performance web services and c|
plications. While key-value stores offer
mance and scalability advantages comy
databases, they achieve these properties
API that limits object retrieval—an ob;
trieved by the (primary and only) key
inserted. This paper presents HyperDex.
y-value store that provides a unique se
enables queries on secondary attribute
behind HyperDex is the concept of hy
which objects with multiple attributes
multidimensional hyperspace. This ma
cient implementations not only for retrie
but also for partially-specified secondar;
and range queries. A novel chaining p
system to achieve strong consistency, n
and guarantee fault tolerance. An evalui
tem shows that HyperDex is 12-13x fas
and MongoDB for finding partially spe
ditionally, HyperDex achieves 2-4x hig
gt /put operations.

Categories and Subject Descrip
Operating Systems]: Organiza
Keywords

Key-Value Store, NoSQL, Fault-Tolera:
tency, Performance

Guangyu Sun

Charitan Schaol of Comniiter

Song Jiang *

Peking University and
Wayne State University

Emin Gun Sirer
Comnuter Scianca

Bernard Wong

FlashStore: High Throughput Persistent Key-Value Store

Biplob Debnath”

Sudipta Sengup:‘a

Jian Ouyang

Baidu I
{ouyangjian. linshidi

s Ange

1 dispal

University of Minnesota Microsoft Researct ici

Twin Cities, USA Redmond, USA R
biplob@umn.edu sudipta@microsoft.com jinl@
ABSTRACT A high throughput persist

Wo present FlashStore, a high throughput, persistent key-
value store, that uses flash memory as a non-volatile cache
botween RAM and hard disk. FlashStore is designed to
store the working set of key-value pairs on flash and use one
flash read per key lookup. As the working set changes over
time. space is made for the current working set b
ing rocently umised key-value pairs to hard disk
cling pages in the flash store. FlashStore organizes key-value
pairs in a log-structure on flash to exploit faster soquential
write performance. It uses an in-memory hash table to index
them, with hash collisions resolved by a variant of cuckoo
hashing. The in-memory hash table stores compact key sig-
natures instead of full keys so as to strike tradeoffs between
RAM usage and false flash read operations

FlashStore can be used as a high throughput persistent
key-value storage layer for a broad range of server class ap-
plications. We compare FlashStore with BerkeleyDB, an
embedded key-value store application, running on hard disk
and flash separately, so as to bring out the performance
gain of FlashStore in not only using flash as a cache above

Tuared dick hant in ite nen af flnch awarn alonrithme

improve the performance o
ory is a natural choice for
tency and 100-1000 times k
Compared to DRAM, flash
higher. Flash stands in the
also in terms of cost - it is
20x more expensive than di
filler between DRAM and «
There are two types of
NAND flash. NAND flash
out and greater storage ¢
NAND flash memory has
DRAM, with cost decreasii
characteristics have led to
sumer electronic devices, s1

cameras,

However, it is only recent
of Solid State Drives (£
tion in desktop and
pace.com recently switch
its servers to using PCI E

NVMKYV: A Scalable, Lightweight, FTL-aware Key

Leonardo Marmolf, Swaminathan Sundararaman!, Nisha Talaga
tFlorida International Univers

SanDisk
Abstract

value stores are ubiquitous in |
intensive, scale out, and NoSQL environments.
fash devices for meeting their per-
swever, by using flash as a sim-
sse KV stores are unable to fully
capabilities that exist within Flash
TTLs). NVMKYV is a lightweight

performance

alue Store

', Raju Rangaswami?
y

is able to achieve single I/O get /put operations with

performance close to that of the raw device, represent-
ing a significant improvement over current KV stores.
NVMKY uses the advanced FTL capabilities of atomic
multi-block write. atomic multi-block persistent trim,
exists. and iterate 1o provide strictly atomic and syn-
chronous durability

antees for KV operations.

Two complementary factors contribute to increased
m i

s native FTL capabilities such as
namic mapping. transactional per-
for high-levels of lock free paral-
n of NVMKYV demonstrates that it
h-performance, and ACID compli-

for KV stores running on a sin-
gle flash device. First, given the increasing flash den-
sities, the performance points of flash devices are now
based on capacity with larger devices being more cost-
effective [42]. Second, virtua
in collocation reauirements for workloads. A recent

tion supports increases

Cache Craftiness for Fast Multicore Key-Value Storage

Yandong Mao, Eddie Kohler’, Robert Morris
MIT CSAIL, "Harvard University

Abstract

‘We present Masstree, a fast key-value database designed for
SMP machines. Masstree keeps all data in memory. [ts main
data structure is a trie-like concatenation of B* -trees, each of
which handles a fixed-length slice of a variable-length key.
This structure effectively handles arbitrary-length possibly-

sufficiently fast single servers. A common route o high per-
formance is to use different specialized storage systems for
different workloads [4]

This paper presents Masstree, a slorage system special-
ized for key-value data in which all data fits in memeory, but
must persist across server restarts. Within these constraints,

Key-Value Stores are Popular

] -] X
W Key-value database - Wi~ x
In Proceedings of the 23rd ACM Symposiian on Operating Sysiems Principles (SOSP 1)
3 This version is reformatied from the official version that appears in the conference proceedings.

< C' Y | @ Secure | https;//en.wikipedia.org/wiki/Key-value_database Q
aom

SILT: A Memory-Efficient, High-Performance Key-Value Store

KV - eventually consistent [edit]

* Dyname Hyeontaek Lim', Bin Fan', David G. Andersen', Michael Kaminsky*
+ Cassandra
+ Oracle NoSQL Database ICarnegie Mellon University, *Intel Labs
+ Project Voldemort
3]
+ Riakl 2008 - 11 Increase
+ OpenLink Vittuoso BT P a—
ro00820153GRS 147 %
KV —ordered [edi] 0.134 — 0428 GR/S 209%
21516 207 4
+ Berkoley D8 492 151 GBIS 07 %
+ FairCom ¢ treeACE/c 1r2eRTG An Efficient Design and Implementation of § o 2011, flash and hard disk capacity
« FoundationDB ; *r than either CPU transistor count or
P LSM-Tree based Key-Value Store on Open-Channel SSD
+ IBM Informix C-SAM
. ‘L’;r;’[‘}"é’DE Peng Wang Guangyu Sun Song Jiang * Jian Ouyang
- Peking University Peking University and Baidu I
+ MemcacheDB = N Wayne State Universi 3
{wang_peng, gsun}@pku.edu.cn fayne State University {ouyangjian, linshidi
KV —RAM |[edit]
+ Aerospike
+ Apache Ignite MKYV: A Scalable, Lightweight, FTL-aware Key-Value Store
+ Coherence o
« FairCom c-ireeACE A 5 s Ange Leonardo Marmolf, Swaminathan Sundararaman’, Nisha T la', Raju Rangaswami?
« GridGain Systems HyperDex: A Distributed, Searchable Key-Value Store tSanDisk *Florida International University
« Hazelcast
ned Abstract is able to achieve single 1/O g operations with
+ memcache :
. . - " -value stores are ubiquitous in high performance performance close to that of the raw device, represent-
+ Openlink Vittuoso Robert Esscnva cpagSemard Wong Emin Gun Sirer S dispal data-intensive, scale out, and NoSQL environments. ing 4 significant improvement over current KV stores
+ Redis e ’ ’ ’ ’ eane fash devices for mecting their per- NVMKYV uses the advanced FTL capabilities of atomic
. Xap Come‘l’l Universit swever, by using flash as a sim- multi-block write. atomic multi-block persistent trim,
escriva@cs comeﬁ ed :se KV stores are unable to fully exists. and iterate to provide strictly atomic and syn-
KV — solid-state drive or rotating disk |[edt ' % capabilities that exist within Flash chronous durability guarantees for KV operations.
TLs). NVMKV is a lightweight Two complementary factors contribute to increased
+ Aerospike iy A - +n ~cirements for KV stores running on a sin-
. CDB First. given the increasing flash den

mance points of flash devices are now

+ Clusterpoint
v with larger devices being more cost-
+ Couchbase ¢

o @ h y i S k ey-v al u e S t 0 r e p 0 p u I a r? e

+ Keyspace
+ LevelDB

+ LMDB

+ MemcacheD

Key-Value Storage
« NoSQLz - -

-+ How is key-value store used?

+ RocksDB {fo

« OpenLink Vil
« Tarantool % ok T e hashing. The in-metmory hash table stores compact key sig- DRAM. with cost decreast
i y i oL/ Pu Operationt natures instead of full keys so as to strike tradeoffs between R COBL o poan .
« Tokyo Cabinet and Kyoto Cabinet Cittairngd SiileckDeses RAM 1 false:finah read Operations characteristics have led to Abstract sufficiently fast single servers. A common route to high per-
« Tuple space AEOrte: Subj Scrip FlashStore can be used as a high throughput persistent ~ Sumer electronic devices, st We present Massiree. a fast key-value database designed for formance is to use different specialized storage systems for
D.4.7 [Operating Systems]: Organiza key-value storage layer for a broad range of server class ap- . P - o Y- 2l different workloads [4]
plications. We compare FlashStore with BerkeleyDB, an ver, it is ouly fecent SMP machines. Masstree keeps all data in memory. Its main)
References (eat] Keywords embesided key-vale store application, ruaing on hard ik 0F Solid State Drives (SS1 data structure is a trie-like concatenation of B* -trees, each of This paper presents Masstree. a storage system special-
- ki - and flash separately, so as to bring out the performance ~ tion in desktop and server - . . . ke y-value dats a fils in me:
1~ o c Key-Value Store, NoSQL, Fault-Tolerai 9 Taoh sepacuialy, io bring out the performance ace.com recently switche which handles a fixed-length slice of a variable-length key, ~ ¢d for key-value data in which all data fits m memory, but

gain of FlashStore in not only using flash
hard diak hut alon in ite nen af

tency, Performance s Ay its servers to using PCI E This structure effectively handies arbitrary-length possibly- must persist across server restarts. Within these constraints,

lach awars

RocksDB is versatile

RocksDB Application Diversity

* Inside Facebook:
* MyRocks: MySQL Engine
* ZippyDB: distributed Key-value store
* Laser: data publishing service
* Dragon: distributed graph query engine
* LogDevice: distributed data store for logs
* Stylus: stream processing framework

Workload Diversity

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

Document Store Example: Tao object

* TAO: Facebook’s Distributed Data Store for the Social Graph

¢ Sample ObjeCt3 '‘timestamp’ => 1505514049,

'author' => 100008855205466,

'message_type'=> 308,

'body' => 'Performance results for load, create index and table scan for
'gid' => 530977083778847,

'lang' => 'en’,

'creator_id' => 100008855205466,

'detected_dialect' => 'en_XX',

'detected_dialect_confidence' => 100,

'modified_time' => 1505514292,

Tao Object: Operation Ratio

Get Add Update Delete

Tao Object: Object Size

Number of Bytes
Mean 168
Median 78
P75 246
P90 441
P95 733
P99 1688

Document encoding

e Customized Format

* C++ struct

* Thrift (RPC Protocol) struct
e JSON/BSON

Workload

* Point lookup only
* Balance Read/write.

Update a small subset of attributes?

* Read-modify-write: read optimized

* Blindly write delta and merge in read: write optimized

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

Example: Tao “associations”

Alice was at the Golden Gate Bridge with Bob

Cathy : Wish we were there! David likes this

id: 534, otype: LOCATION
name: Golden Gate Bridge

[id: 105, otype: USER
loC: 3749 117N, 122°28'43"W

name:; Alice

18

[id: 244, otype: USER

N

name: Bob

@ | ‘a .| id: 632, otype: CHECKIN

Zlol =)

=2 22 =

el @ o

& & =8

[O
om
T
-
&

id: 771, otype: COMMENT

PR text: Wish we were there!

[id: 471, otype: USER

FB page => admin

* Key: [page_id, user_id]

* Value: [update_time, is_deleted...]

* Common Query: find admins of a page of page_id:
* Scan keys in the range prefixed with page_id

Number of Edges Per Vertex

Number of Edges
Mean 3.85
Median 1
P75 1
P95 3
P99 22

Optimization: bloom filter using range prefix

Tao associations: Operation Ratio

...

check edge get edges from a add edge delete edge update edge
existence vertex

Ranked Comments of a post

* Key: [post_id, language_id, ranking_score, comment_id]
* Value: (empty)
* Common Query: find top ranked comments of post_id:

* Scan the first N keys between
| post_id, viewer_language, min_score] to [... max_score]

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

Example: Recent Time-Ordered Events

* Key: [user_id, event_timestamp | with timestamp in reverse

order
* Value: some metadata of the event.
* Read Query: range scan between [user_id, max_ts] to

[user_id, min_ts] limit N

Workload of the example

* Write/Read 63:1
* Average keys per range query: ~1,100
* Average value size per key: 230 bytes

Retire Old Time-Ordered Events

e Time-Ordered Events should retire if
* |t is too old

* Too many Time-Ordered Events from a user

* Solution: compaction filter

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

Counter Service

* Key: counter_ia

* Value: the counter. Common counter types:
* Plain count
* Unique count (using hyperloglog)
* Auto-decaying Counter Service

* Usually update heavily

Delta Updates (merge operator)

In-memory write buffer

Write se—

Merge operator

+1

-5+1+3=12 re ad

N
o
==
&
Ul
o
==
ar
(

|

+3
On-disk LSM-tree

Workload in one use case

* 180K key updates + 19K keys read per second per host
* Average key-update size 26 bytes

* How many delta entries to merge when read:
* Median: 7
* P90: 801

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

Storage For Logs

* Key: [logging_id, seq_id] where seqg_id is incremental

* Value: message contents

* Common Query: range scan from [logging_id,
last_seen_seq_id] for all keys of logging_id.

* Write-heavy, most reads are against recent updates.

* Older data is deleted.

Example: A LogDevice Use Case

* For a host:
* 260K keys inserted per second
* 350K keys read per second
* Every read gets 1.13 keys
* Average log size 80 bytes

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

RocksDB as a Cache: an example

Fill the cache

Cache in DRAI\/I

Eviction

Refill

Cache on SSD

RocksDB as a Cache: an example

e Put()/Get() only. ';':;ft’:
* 3.4K write/s, 14K read/s per host Mean 429
* Hit rate about 13% Median 141
* Write heavy, sometimes read heavy too. P95 340
* Evict old data in FIFO. P99 4000

RocksDB as a Cache:
Some Tuning Experience

* Minimize compaction
* Be careful about bloom filter false positive rate

Drop oldest data directly

Key and value should be stored separately for large values.

RocksDB Workload Diversity

Document Store
Social Graph Edges
Time-Ordered Events
Counter Service

Storage For Logs

SN~ IWINK

Cache

Common Workload Pattern

Key Length Distribution

Probability Density
o o

Key + Value Length Distribution

K+V length
(Bytes) ‘Sa
Mean 369
Median 59 :
P75 216 E
P90 1.68K
P95 2.75K
P99 12.2K

Number of Keys Per Range Query

tkeys
updated per
write
Mean 176
Median 2
P75 8
P95 732
P99 3.67K

o
‘pon
=

Number of Keys Updated Per Writex

ttkeys
updated per
write
Mean 10.8 i
Median 1 L
P95 10
P99 250

Take-Away

e RocksDB is versatile:
* Diversified Applications
e Diversified Workloads

Thank You!

