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Agenda

* Geo-replication;
 Consistency/availability trade-off;
* Just-Right Consistency!

e ...and how to use it.
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Consistency/availability trade-off

* Weak consistency is difficult to get right:
* Not well-defined semantics;
 Difficult to program;
* Unpredictable errors in production due to uncoordinated executions.

 Strong consistency performs worse, but is safe:
* Well-defined semantics;
* Application’s logic is protected from concurrency errors;
» Scalable and low-latency in some deployments;
* Cross-replica coordination affects performance in the wide-area.



Consistency/availability trade-off

* What we really care about is application correctness.

* Serializing operations is a (overly conservative) way of maintaining
correctness.

* Example:

* Operations on a bank account can be applied concurrently as long as money
does not disappear, get duplicated, or used without permission.



Just-Right Consistency!

* Ensure application correctness with minimal coordination.

e How to do it?



Banking Application:

* All replicas must converge to the same state.

* Account balance is equal to init, ..+ 2, deposit() — ), withdrawals() ;
* The money cannot temporarily disappear in a transfer.

* Account balance must be non-negative.



Problem 1: State divergence
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* Concurrent updates lead to state divergence.



Replicated data types
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* Ensure state convergence without losing updates.



Problem 2: Atomic operations
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* ACID transactions are not highly available.



Transactional consistency
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* Ensure atomicity with weaker isolation.

* Snapshot reads; atomic updates.

5+1==6




Problem 3: Asynchronous replication
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* Does not preserve the execution order of operations at the origin.

O
(@)
[
&
ul
&
i—'\
4 N

8
&
2
]
]
!
]
]
]
J
N




Causal consistency
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* Execution order of operations at different replicas respect the
happens-before relationship.
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Problem 4: Invariant violation
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* Concurrent executions might break the correctness of applications.
— Use coordination?



Minimize coordination
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* Use coordination only when not safe to execute operations
asynchronously.



Performance
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Other application Invariants

* Bidirectional relationship = use transactions;
 Referential integrity = automatic repair;

* Overdraft = compensations;

 Sequential identifiers = fall back to coordination.



Just-Right Consistency!

* Ensure application correctness with minimal coordination.

* How to do it?
* Convergent data-types;
* Transactions;
e Causality;
* Maintain application-level invariants.



JRC! Tools

* Help programmers verify application correctness using a sound

approach:

* Static program analysis.
* Detect concurrency conflicts.

* Modify applications and test again.

* Publicly-available tools on the way.

JRC Tools video:
http://tiny.cc/JRC-TOOLS-VIDEO




AntidoteDB

GﬂntlboteDB

http://syncfree.github.io/antidote/

* Just-Right Consistency database.
e Geo-/Partial-replication.

e SQL-like interface on the way:
* Well-known and widely adopted;
* QOut-of-the-box support for maintaining many common classes of invariants.
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AntidoteDB performance in FMKe Benchmark
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Questions?

* JRC Tools video:
http://tiny.cc/JRC-TOOLS-VIDEO

* AntidoteDB:
http://syncfree.github.io/antidote/

e FMKe Benchmark
e http://tiny.cc/fmke
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Backup slides



Conflict detection algorithm

INV = enrolled(p, t) = player(p) /\ tournament(t)

enroll(“Mario”,”World Cup”) remove_tournament(“World Cup”)

player(*Mario™) tournament(“World Cup”) := false

enrolled(“Mario”, World Cup”) := true

R1 State

tournament(“World Cup”)
player(“Mario”)

R2 State
ARV oA Ca Y

enrolled(“Mario”, WC”)

Merged State

enrolled(“Mario”, WC”)
player(“Mario”)

Valter Balegas et al.— NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa @ SyncFree Month 36 25
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Referential integrity example
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Referential integrity example
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Referential integrity example
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Preventive repair example
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Preventive repair example
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Preventive repair example
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Scalability
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