Just-Right Consistency!

Valter Balegas, Nuno Preguica, Marc Shapiro, Annette Bieniusa,
Christopher S. Meiklejohn, Carla Ferreira & many others

o

\§‘\\Ie“51 DKDGO y @%c'. »

&N YUCL /4 TECNICO T = "
5 Universite : i] LISBOA m [ECHNISCHE UNIVERSITAT
N & o

S catholique "a«“& m KAISERSLAUTERN)@8¢ SORBONNE

NOVALINGS . QyA/c FREE =

SCIENCE AND INFORMATICS

Agenda

* Geo-replication;
 Consistency/availability trade-off;
* Just-Right Consistency!

e ...and how to use it.

Geo-replication

P Consistency

=15 High availability

Low latency

S

L9
g

Geo-Replication

&5 5 _: S
R Seare.,
{" ~v¢"‘ ~/\._?..,_$_._, \q, '..-"&'_;

'“‘ r@ \'Sl

Y N G - \“

Consistency/availability trade-off

* Weak consistency is difficult to get right:
* Not well-defined semantics;
 Difficult to program;
* Unpredictable errors in production due to uncoordinated executions.

 Strong consistency performs worse, but is safe:
* Well-defined semantics;
* Application’s logic is protected from concurrency errors;
» Scalable and low-latency in some deployments;
* Cross-replica coordination affects performance in the wide-area.

Consistency/availability trade-off

* What we really care about is application correctness.

* Serializing operations is a (overly conservative) way of maintaining
correctness.

* Example:

* Operations on a bank account can be applied concurrently as long as money
does not disappear, get duplicated, or used without permission.

Just-Right Consistency!

* Ensure application correctness with minimal coordination.

e How to do it?

Banking Application:

* All replicas must converge to the same state.

* Account balance is equal to init, ..+ 2, deposit() —), withdrawals() ;
* The money cannot temporarily disappear in a transfer.

* Account balance must be non-negative.

Problem 1: State divergence

withdraw(3,a)

D N

wrlte(a) e
\\ ,/

a.5 a:3 write(a) z’ ‘; -

~ / \
@ withdraw(2

* Concurrent updates lead to state divergence.

Replicated data types

withdraw(3,a)

Cltl

m \ fm

v

updt(-3,a)\\\ ,,/*

N
N~ s’

A
a.5 updt(-Z,ay’ \’_4

v

v

— / \
@ withdraw(2

* Ensure state convergence without losing updates.

Problem 2: Atomic operations

transfer(3, a,, a) ok

Cltl
m\ / 22, a5

\"‘\ updt(+3, a,)
updt(-3, a,) \ ~“ P

ac5 a1 acz ag:1 ~ ac2 a4

/\ /\/\ :

v

v

balance(a s) 6 balance(a,) balance(a 1 2+411=6

* ACID transactions are not highly available.

Transactional consistency

transfer(3, a,, a,)

ok

v

Cltl
m\ / 22, a5

updt(+3, a)

~
S~o
-~
Sso

/\/\

v

updt(-3, a.)
balance(a S) 6 balance(a,)

* Ensure atomicity with weaker isolation.

* Snapshot reads; atomic updates.

5+1==6

Problem 3: Asynchronous replication

transfer(3, a,, a,) ok notify(clt, ,'updated_a,’)
Clt,

-
Seo
s
~
s

notlfy()\/ \
Q balance(a) 1 balance(ay) 1

* Does not preserve the execution order of operations at the origin.

O
(@)
[
&
ul
&
i—'\
4 N

8
&
2
]
]
!
]
]
]
J
N

Causal consistency

transfer(3, a,, a,) ok notify(clt,,'updated_a,’)
Clt,

b
-~
-
~
-~
~
-~
o
-~
-~
~§.
-~

Q balance(a,) 1 balance(a) 74

* Execution order of operations at different replicas respect the
happens-before relationship.

O
(@)
[
&
ul
&
i—'\
4 N

©

@0

> w

©

%o

iy
35
o
~+
=1
=

A

Problem 4: Invariant violation

withdraw(3, a) ok
Cltl >
\ / a2 | | a1 |
SN updt(-3, a)
| s | [a2] o3, ‘\ a1

v

@/\

withdraw(3, a) ok

* Concurrent executions might break the correctness of applications.
— Use coordination?

Minimize coordination

withdraw(3, a) ok

Qm s\ s ‘

\\ updt(-3, a)

v

\ grant(l a)

N esle [z

o IVAN

withdraw(3, a) fail

v

v

* Use coordination only when not safe to execute operations
asynchronously.

Performance

200 ——
180 | +
160 |
140 |
120 |
100 |
80 |
60 |
40 |
20 |]
R T ST R ———_
0 20 40 60 80 100 120
Time [s]

Latency [ms]

Latency of operations for a single site, in a 3DC deployment.

Other application Invariants

* Bidirectional relationship = use transactions;
 Referential integrity = automatic repair;

* Overdraft = compensations;

 Sequential identifiers = fall back to coordination.

Just-Right Consistency!

* Ensure application correctness with minimal coordination.

* How to do it?
* Convergent data-types;
* Transactions;
e Causality;
* Maintain application-level invariants.

JRC! Tools

* Help programmers verify application correctness using a sound

approach:

* Static program analysis.
* Detect concurrency conflicts.

* Modify applications and test again.

* Publicly-available tools on the way.

JRC Tools video:
http://tiny.cc/JRC-TOOLS-VIDEO

AntidoteDB

GﬂntlboteDB

http://syncfree.github.io/antidote/

* Just-Right Consistency database.
e Geo-/Partial-replication.

e SQL-like interface on the way:
* Well-known and widely adopted;
* QOut-of-the-box support for maintaining many common classes of invariants.

21

AntidoteDB performance in FMKe Benchmark

35

| | I
1DC-Normal —5—
| 2DC-Nornal — x —

30 3DC-Normal ---x---

25 -
20 |-

15 |-

Latency (ms)

10 -

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Throughput (tx/s)

Latency of operations for multiple sites with 4 nodes per site.

Questions?

* JRC Tools video:
http://tiny.cc/JRC-TOOLS-VIDEO

* AntidoteDB:
http://syncfree.github.io/antidote/

e FMKe Benchmark
e http://tiny.cc/fmke

23

Backup slides

Conflict detection algorithm

INV = enrolled(p, t) = player(p) /\ tournament(t)

enroll(“Mario”,”World Cup”) remove_tournament(“World Cup”)

player(*Mario™) tournament(“World Cup”) := false

enrolled(“Mario”, World Cup”) := true

R1 State

tournament(“World Cup”)
player(“Mario”)

R2 State
ARV oA Ca Y

enrolled(“Mario”, WC”)

Merged State

enrolled(“Mario”, WC”)
player(“Mario”)

Valter Balegas et al.— NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa @ SyncFree Month 36 25

25

Referential integrity example

-

Referential integrity example
=
=

Referential integrity example
M
DC m I >

Q ><

Referential integrity example

DC, >

Dangling

DC, pointer

29

Preventive repair example

M\

DC,

rem b,

DC,

30

Preventive repair example

M\

DC,

DC,

31

Preventive repair example

DC,

DC,

32

Scalability

read(update) ratio
800

700
600

» 500

Q400

@

X 300
200
100

99(1) 90(10) 75(25) 50(50)

DCs x .3 A A '\' e 5
Servers NN o NN o NN Vo i

100k keys/partition

LWW registers power law distribution

33

