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Reduced storage costs due to Big Data 
systems (e.g., HDFS, S3, Kafka), cloud

Need to monitor complex applications 
relying on sensors, processes, 
production telemetry 

e.g., Microsoft, Facebook, Twitter, 
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Data volumes continue to grow; storage 
and compute cheaper and easier than 
ever before: {Spark, Kafka, Tableau}  x 
{AWS, GCP}

Microsoft, Facebook, Twitter, LinkedIn 
collect 12M+ events/sec today

Monitoring & Telemetry Drive Data Volumes
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Our research:
How can big-data systems monitor and 
analyze data more effectively at scale?



Key Bottleneck in Monitoring: Human Attention

Human attention is scarce! 
Infeasible to manually inspect large 
volumes

In practice: data only accessed for 
post-hoc root cause analyses

Top SV orgs: < 6% data read
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Key Bottleneck in Monitoring: Human Attention

Dataflow engines provide a means 
of processing this data…

…but don’t tell us what to show to 
humans, or what functions to run!



Key Bottleneck in Monitoring: Human Attention

Dataflow engines provide a means 
of processing this data…

…but don’t tell us what to show to 
humans, or what functions to run!

Stats+ML offer possibilities, but 
little tried + battle-tested at scale
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MacroBase: an analytics engine that 
prioritizes user attention for effective 
monitoring of high-volume, high-dimensional 
data

This talk:
Share our goals, architecture, results, and future roadmap
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Prioritizing Attention in Fast Data

Demo 

Architecture + Usage

A Relational Algebra for MacroBase
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Case Study: CMT
Cambridge Mobile Telematics: 
Monitors driving behavior via mobile 
application available for smartphones
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Cambridge Mobile Telematics: 
Monitors driving behavior via mobile 
application available for smartphones

Question: Is the application behaving 
correctly on every platform? 



25 Major API Releases
Over 24K Android device types
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Challenge: Spending even 1 second per 
deployment combination requires 7 days



Cambridge Mobile Telematics: 
Monitors driving behavior via mobile 
application available for smartphones

Challenge: Spending even 1 second per 
deployment combination requires 7 days

“iOS 9.0 beta 1–5 (but not 
9.0.1) had a buggy Bluetooth 
stack that prevented iOS 
devices from connecting to 
CMT devices.”

Case Study: CMT
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Transformation

Feature extraction, dimensionality reduction, streaming ETL

T C E

Transform ExplainClassify



Optional 

Domain-specific data pre-
processing

Combine and chain many 
transformations to build complex 
features

Transformation

e.g., image-specific features 
(e.g., hue and luminosity)

e.g., time series dimensionality 
reduction (via FFT, PCA)
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Classification

Segmentation, rule evaluation, data filtering

T C E

Transform ExplainClassify



Segment and filter stream by 
target behavior (e.g., abnormalities)

Default: unsupervised density 
estimation

Combine with supervised methods 
(thresholds, predicates)

Classification

More than 
k standard 
deviations 
from µ

Mean µ

T C E
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Segment and filter stream by 
target behavior (e.g., abnormalities)

Default: identify unlikely data points 
(e.g., via density estimation)

Combine with thresholds, 
predicates, or custom classifiers

Classification

More than 
k standard 
deviations 
from µ

Mean µ

T C E



Explanation

Find underlying causes for classified abnormalities

T C E

Transform ExplainClassify



Explain classification results by 
identifying behavior correlated 
with being filtered
Default: relative risk calculation 
based on data attributes

Explanation

Errors
{iPhone7, Canada}
{iPhone7, USA}
{iPhone8, Canada}
{iPhone7, USA}
{iPhone8, Canada}

Non-Errors
{iPhone8, USA}
{iPhone7, USA}
{iPhoneX, USA}
{iPhone7, USA}
{iPhone7, USA}
{iPhone8, USA}
{iPhone7, USA}
{iPhone7, USA}

Canada may 
have a problem!

T C E



Explanation
Relative Risk Ratio

error non-error

T C E

Explain classification results by 
identifying behavior correlated 
with being filtered
Default: relative risk ratio 
based on data attributes

=P(error | Canada)
P(error | not Canada)

# tuples w/out Canada

# outliers w/ Canada
# tuples w/ Canada

# outliers w/out Canada
=

10

3
3
2
5



MacroBase Architecture: Operator Cascades

Execute operator cascades to transform, segment, aggregate streams

T C E

Transform ExplainClassify
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Usage—JSON Rest API
{

"inputURI": ...,

"metric": "Percentile Dropped records",

"classifier": "quantile",

"cutoff": 1.0,

"includeHi": true,

"includeLo": false,
"attributes": ["SDK Version", "Network Type", "App Version",

"OS Version", "Device"],

"minSupport": 0.005,

"minRatioMetric": 1.5

}



Online Progress Estimation in 
Dimensionality Reduction

Principal Component Analysis 

Core dimensionality reduction operator for many applications

Out-of-the-box implementations are extremely slow
O(min[mn²,nm²]) via singular value decomposition

Two insights enable significantly faster performance in practice even 
with naïve PCA implementations

[Suri and Bailis, arXiv 2017]

T C E



Online Progress Estimation in 
Dimensionality Reduction

Principal Component Analysis 

Core dimensionality reduction operator for many applications

Out-of-the-box implementations are extremely slow
O(min[mn²,nm²]) via singular value decomposition

Two insights enable significantly faster performance in practice even 
with naïve PCA implementations

[Suri and Bailis, arXiv 2017]

T C E



Online Progress Estimation in 
Dimensionality Reduction

Principal Component Analysis 

Core dimensionality reduction operator for many applications

Out-of-the-box implementations are extremely slow
O(min[mn²,nm²]) via singular value decomposition

Two insights enable significantly faster performance in practice even 
with naïve PCA implementations

[Suri and Bailis, arXiv 2017]

T C E



Online Progress Estimation in 
Dimensionality Reduction

[Suri and Bailis, arXiv 2017]

T C E

Data sources are structured; 
sample prior to model
Dimensionality reduction is a pre-
processing step;sample until too 
expensive
50x speedup in dimensionality 
reduction, and 33x speedup in 
end-to-end pipelines compared to 
PCA via SVD
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Predicate Pushdown in
Density Estimation

Kernel Density Estimation
Each point contributes a small “kernel”
Asymptotically optimal estimation

Compute density: O(n²)
500K points: 2 hours on 2.4GHz CPU!

Can we do better?

[Gan and Bailis, SIGMOD 2017]
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Predicate Pushdown in
Density Estimation
Classification: only need to tell 
whether above or below target

Don’t need to compute exact 
densities!

Use branch and bound: 2 orders 
of magnitude speedup

[Gan and Bailis, SIGMOD 2017]
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Efficient Parameter Search in 
Time Series Visualization

[Rong and Bailis, VLDB 2017]

Good: retains “outlyingness”Bad: loses “outlyingness”Original: noisy

Time Series Smoothing

Raw time series are hard to read; Smoothing can help! 

Challenge: Automatically choose smoothing parameters

T C E



Efficient Parameter Search in 
Time Series Visualization
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possible while preserving long-term deviations 
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[Rong and Bailis, VLDB 2017]

Time Series Smoothing

• Smooth as much as possible while preserving long-term 
deviations 

T C E



CIDR17, SIGMOD17: Overview of Preceding
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Next Generation: Declarative Algebra

Is there a more general interface for composing MacroBase
queries, and combining with external analytics operators?

Our proposal: the DIFF operator
find the differences between two relations

Like SQL!



MACRODIFF: MacroBase as SQL
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MACRODIFF: MacroBase as SQL
# percentile defined by user

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md

SELECT * FROM

DIFF

(SELECT * FROM md WHERE bd_percentile > 0.95) as outliers,

(SELECT * FROM md WHERE bd_percentile <= 0.95) as inliers

ON
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MACRODIFF Demo



DIFF: composable with relational algebra

Return normalized relation

Schema of input relations retained, ratio and support attributes added

Composable with downstream SQL queries

app_version hw_make hw_model firmware_version risk_ratio support

v48 HTC null 4.3.1 25x 20%
null Lenovo Lenovo_A390 5.1.1 10x 15%
v50 Emdoor em_i8180 null 100x 7%



DIFF is the new CUBE
CUBE lets you slice
and dice your data

DIFF tells you how
to slice and dice your data



Recent Work

• MacroBase motivation [CIDR 2017]
• MacroBase architecture, sketches [SIGMOD 2017]
• tKDC classification [SIGMOD 2017]

• NoScope video classification [VLDB 2017]
• ASAP time-series visualization [VLDB 2017]
• DROP dimensionality reduction [forthcoming]

Read our blog posts!
http://dawn.cs.stanford.edu/blog



Conclusion 

Increasing need for data monitoring demand new tools for 
prioritizing human attention; dataflow engines are not enough

MacroBase: combine feature extraction, classification, 
explanation in an end-to-end analytic monitoring engine

https://github.com/stanford-futuredata/macrobase
http://dawn.cs.stanford.edu/blog
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