MacroBase: A Search Engine for Fast Data

Peter Bailis, Jialin Ding, Edward Gan, Kexin Rong, Sahaana Suri

Team MacroBase

Peter Bailis Professor

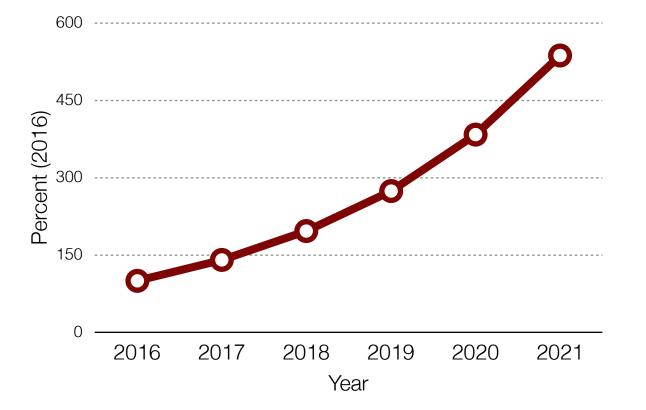
Edward Gan 3rd year Ph.D.

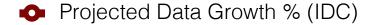
Kexin Rong 3rd year Ph.D.

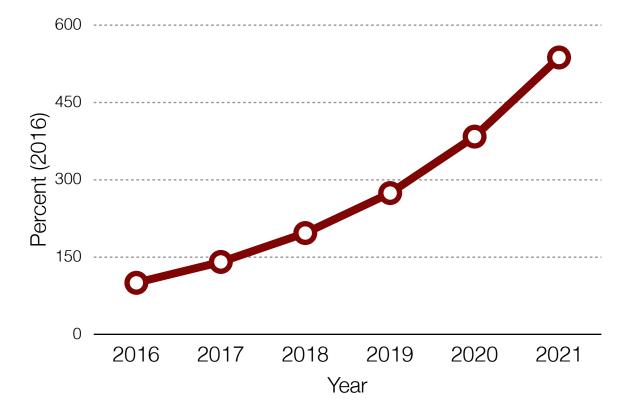
Sahaana Suri 3rd year Ph.D. Firas Abuzaid 3rd year Ph.D. Jialin Ding 4th year B.S.

macrobase@cs.stanford.edu

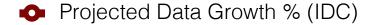








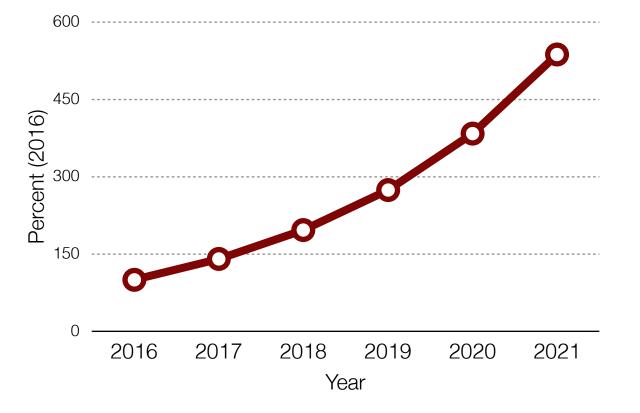
Ability + need to monitor complex applications relying on sensors, processes, production telemetry



600 450 Percent (2016) 150 0 2017 2020 2016 2018 2019 2021 Year

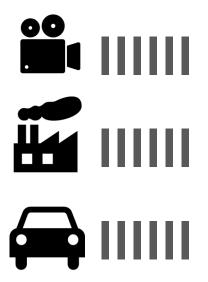
Ability + need to monitor complex applications relying on sensors, processes, production telemetry

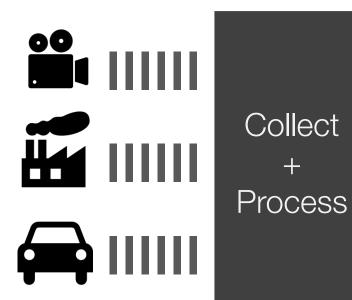
Reduced storage costs due to Big Data systems (e.g., HDFS, S3, Kafka), cloud

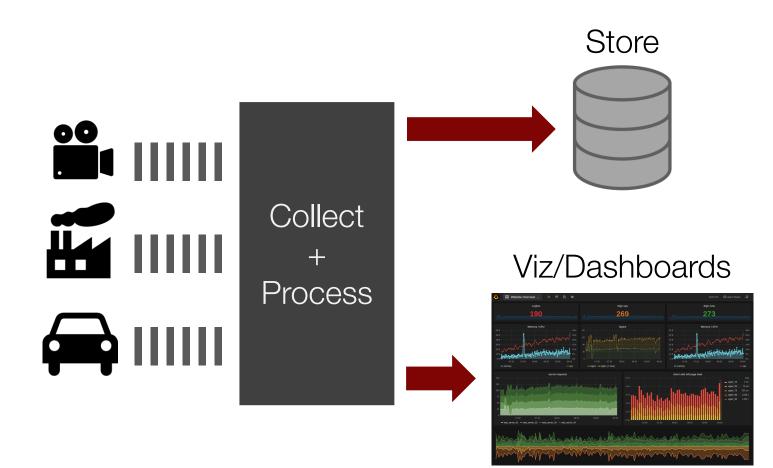


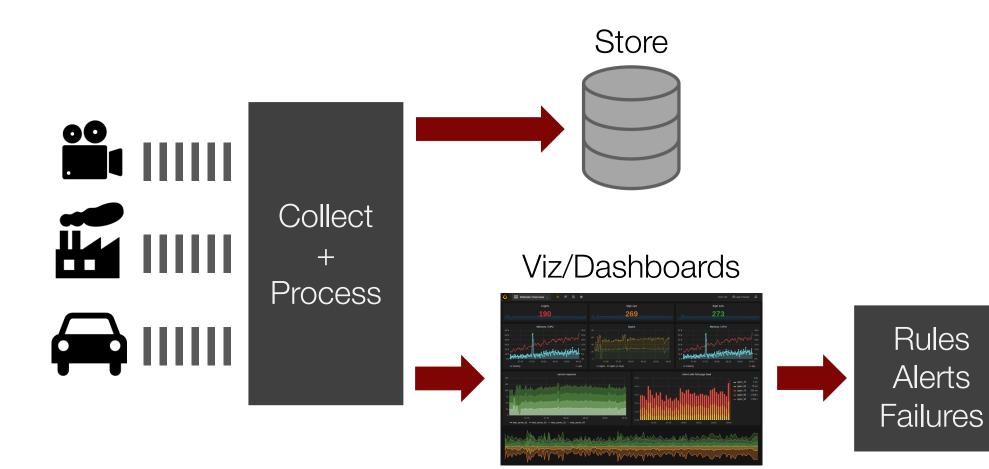
Data volumes continue to grow; storage and compute cheaper and easier than ever before: {Spark, Kafka, Tableau} x {AWS, GCP}

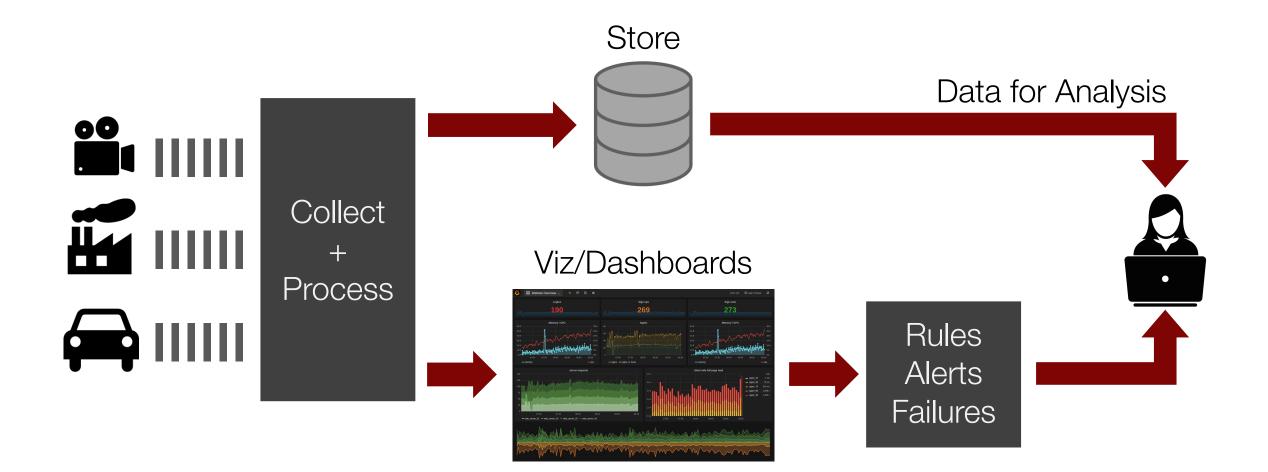
Microsoft, Facebook, Twitter, LinkedIn collect **12M+ events/sec** today

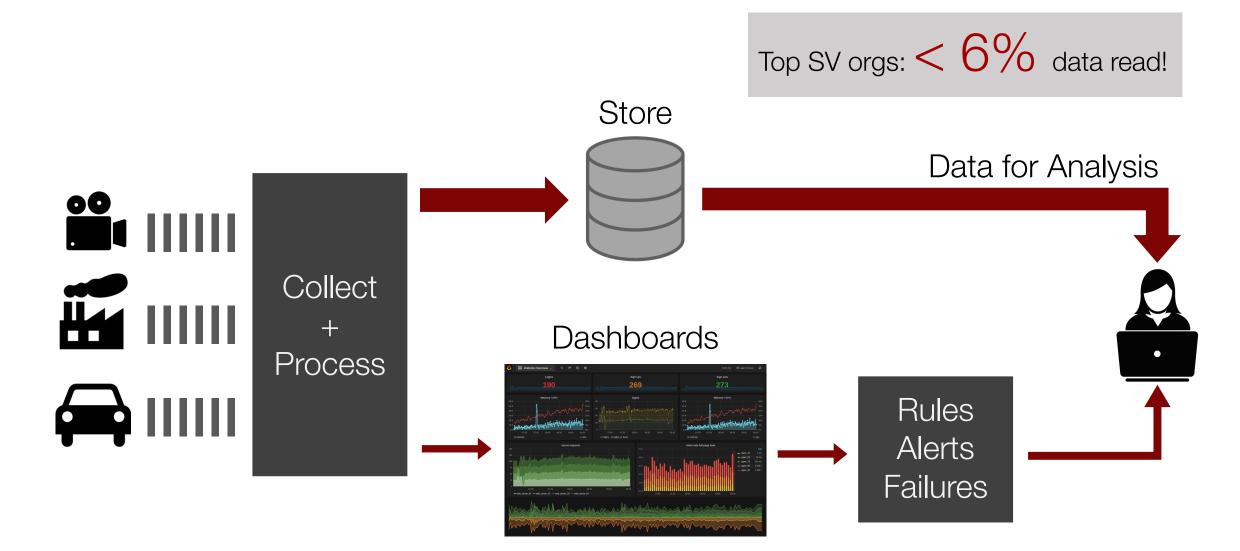












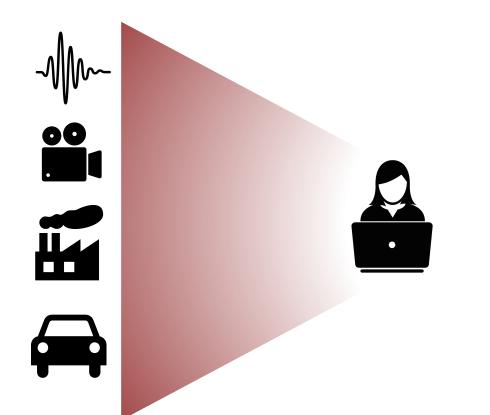
12+mevents/sec

12+mevents/sec

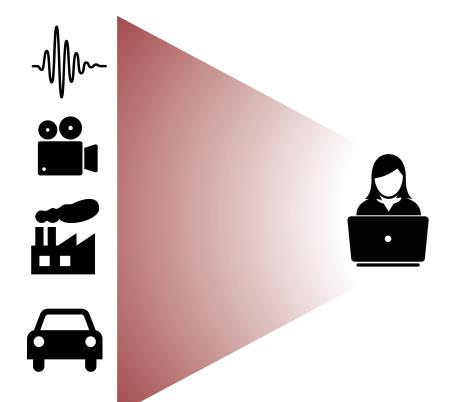
Our research:

How can big-data systems monitor and analyze data more effectively at scale?

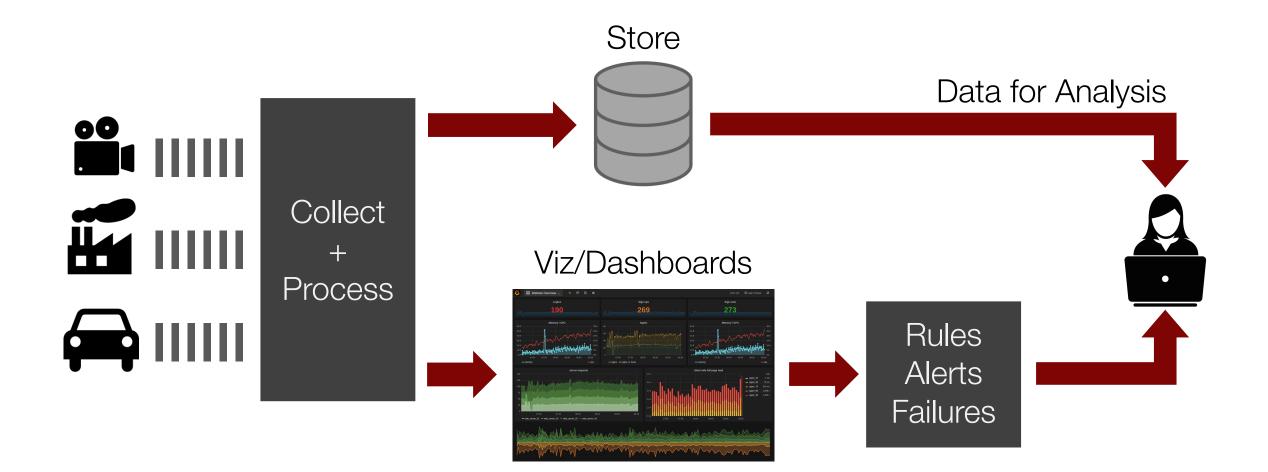
Key Bottleneck in Monitoring: Human Attention



Key Bottleneck in Monitoring: Human Attention



Human attention is scarce! Infeasible to manually inspect large volumes



Key Bottleneck in Monitoring: Human Attention

Dataflow engines provide a means of processing this data...

...but don't tell us what to show to humans, or what functions to run!

Key Bottleneck in Monitoring: Human Attention

Dataflow engines provide a means of processing this data...

...but don't tell us what to show to humans, or what functions to run!

Stats+ML offer possibilities, but little tried + battle-tested at scale

Monitoring with MacroBase

MacroBase: an analytics engine that prioritizes user attention for effective monitoring of high-volume, high-dimensional data

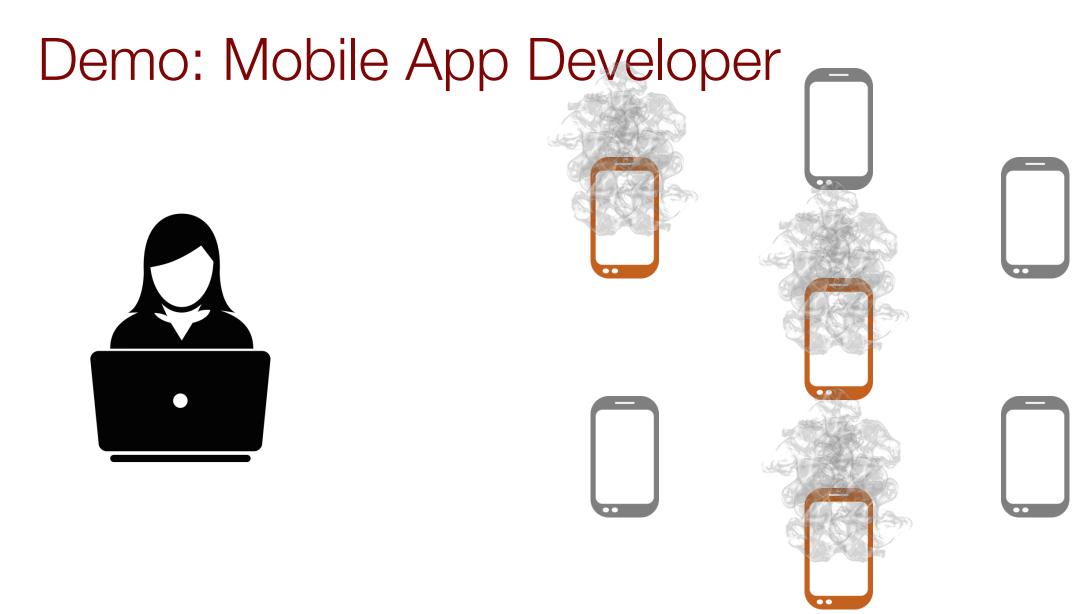
This talk: Share our goals, architecture, results, and future roadmap

Prioritizing Attention in Fast Data

Demo

Architecture + Usage

A Relational Algebra for MacroBase



Input data

Database Configuration

Database URL:	localhost	submit
Base query:	csv://core/demo/mobile_data.csv	submit

Input data

Select metrics

chema Information a	nd Selection		sample reset clea
Explanatory Attribute?	Target Metric? Lo/Hi	Name	Туре
+	+ t	app_version	entry
+	+	avg_temp	entry
+	+	battery_drain	entry
+	+	firmware_version	entry
+	+	hw_make	entry
+		hw_model	entry
+	+	record_id	entry
+	+	state	entry
+		trip_time	entry
+	+ t	user_id	entry

Input data

Select metrics

Select attributes

Schema Information ar	nd Selection		sample reset clea
Explanatory Attribute?	Target Metric? Lo/Hi	Name	Туре
*	+ t	app_version	entry
+	+	avg_temp	entry
+	+	battery_drain	entry
*	+	firmware_version	entry
×	+	hw_make	entry
*	+	hw_model	entry
+	+	record_id	entry
+	+	state	entry
+	+	trip_time	entry
+	+ t	user_id	entry

Input data

Select metrics

Select attributes

Explore results

R	esults			
	# Outliers			1032
	# Inliers			102214
	Timing			
	Load time			391ms
	Processing time			23ms
	Summarization time			70ms
Overview Plot: battery_drain				
Sort order: support ratio number of attributes		sity		
		Probability Density	3 	
	Attributes:	hw_make, hw_model, app_version	abilit	2
	Ratio Out/In:	472.89409666285565	Probi	1
	Support: Records:	0.8226744186046512 849		
			-	0 0.2 0.4 0.6 0.8
				battery_drain
				base

hw_make:Emdoor,hw_model:em_i8180,app_version:v50

Case Study: CMT

Cambridge Mobile Telematics:

Monitors driving behavior via mobile application available for smartphones

Case Study: CMT

Cambridge Mobile Telematics:

Monitors driving behavior via mobile application available for smartphones

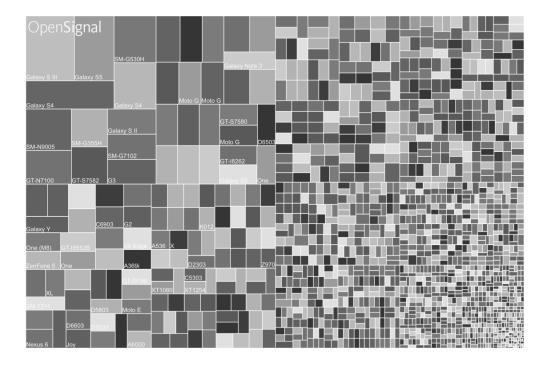
Question: Is the application behaving correctly on every platform?

Case Study: CMT

Cambridge Mobile Telematics:

Monitors driving behavior via mobile application available for smartphones

Challenge: Spending even 1 second per deployment combination requires 7 days



25 Major API Releases Over 24K Android device types

Case Study: CMT

Cambridge Mobile Telematics:

Monitors driving behavior via mobile application available for smartphones

Challenge: Spending even 1 second per deployment combination requires 7 days

"iOS 9.0 beta 1–5 (but not 9.0.1) had a buggy Bluetooth stack that prevented iOS devices from connecting to CMT devices."

Prioritizing Attention in Fast Data

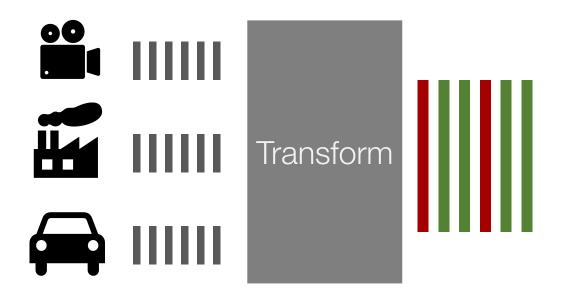
Demo

Architecture + Usage

A Relational Algebra for MacroBase

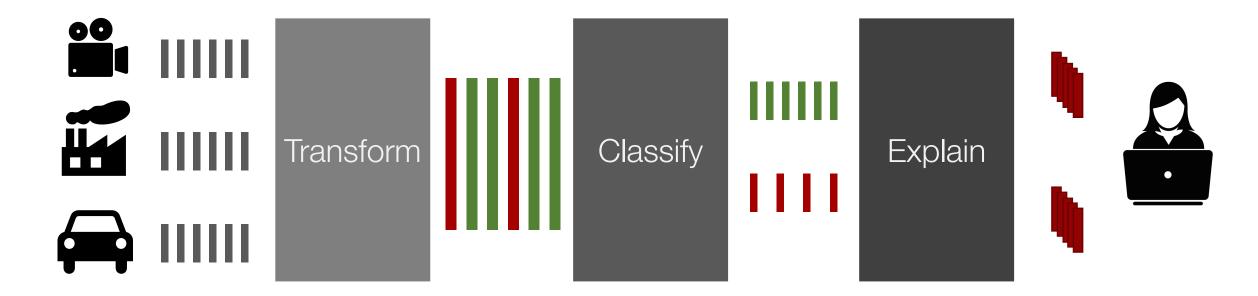
Execute operator cascades to transform, segment, and explain streams

Execute operator cascades to transform, segment, aggregate streams

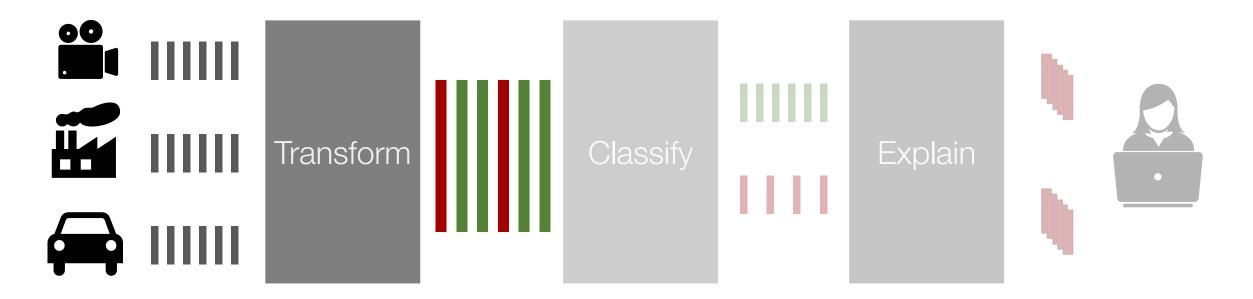


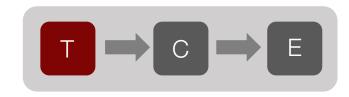
Т

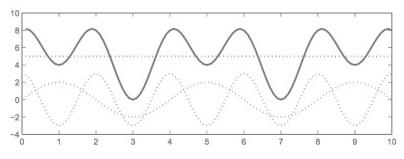
Execute operator cascades to transform, segment, aggregate streams



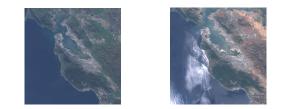
Feature extraction, dimensionality reduction, streaming ETL





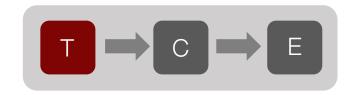


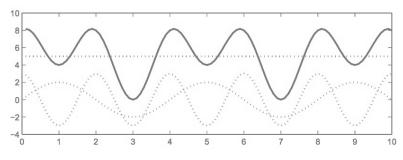
e.g., time series dimensionality reduction (via FFT, PCA)



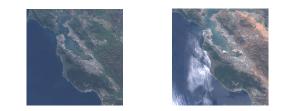
e.g., image-specific features (e.g., hue and luminosity)

Optional





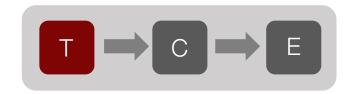
e.g., time series dimensionality reduction (via FFT, PCA)

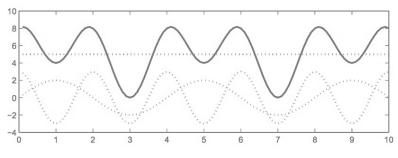


e.g., image-specific features (e.g., hue and luminosity)

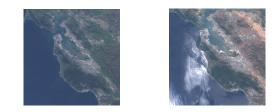
Optional

Domain-specific data preprocessing





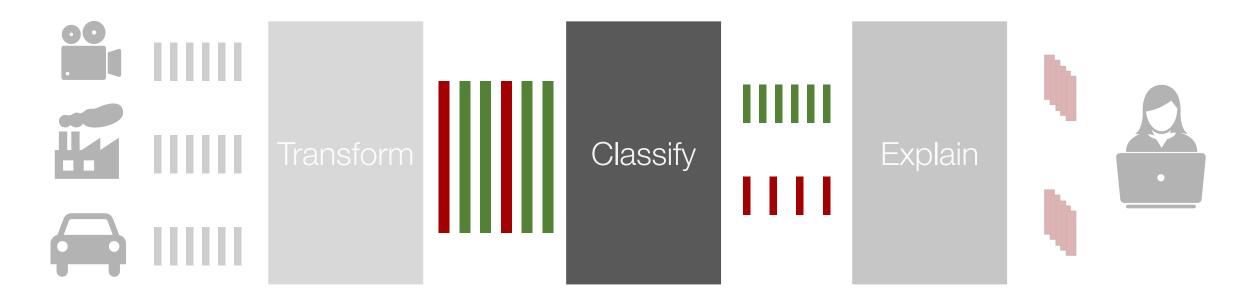
e.g., time series dimensionality reduction (via FFT, PCA)



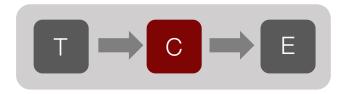
e.g., image-specific features (e.g., hue and luminosity) Domain-specific data preprocessing

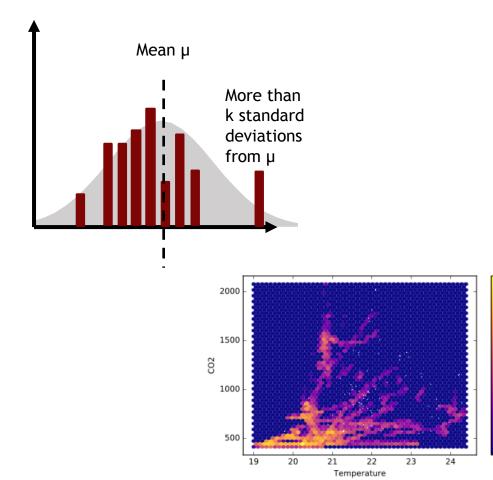
Combine and chain transformations to build complex features

Segmentation, rule evaluation, data filtering



Classification



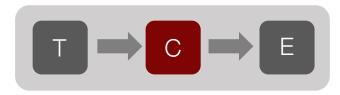


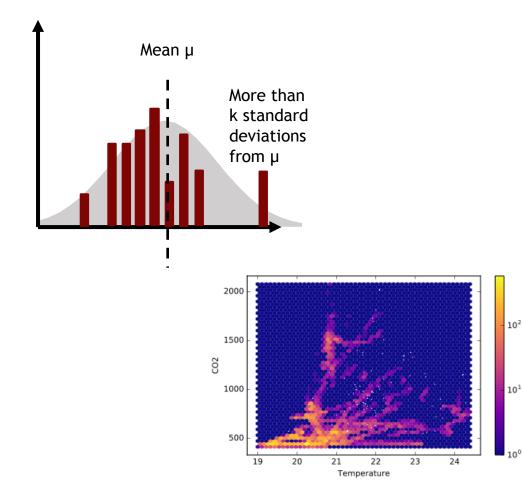
10²

10¹

Segment and filter stream by target behavior (e.g., abnormalities)

Classification

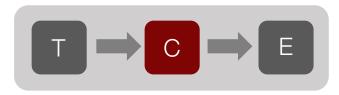


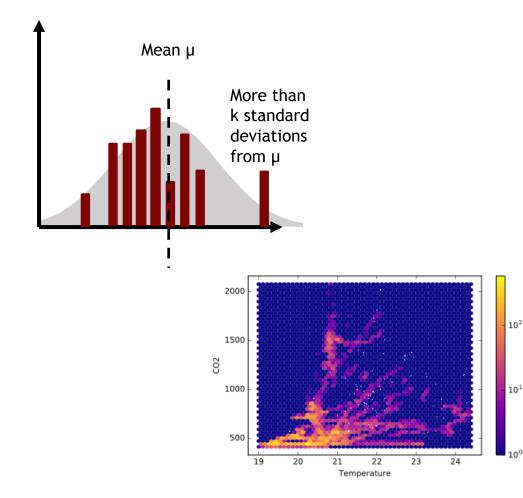


Segment and filter stream by target behavior (e.g., abnormalities)

Default: identify unlikely data points (e.g., via density estimation)

Classification



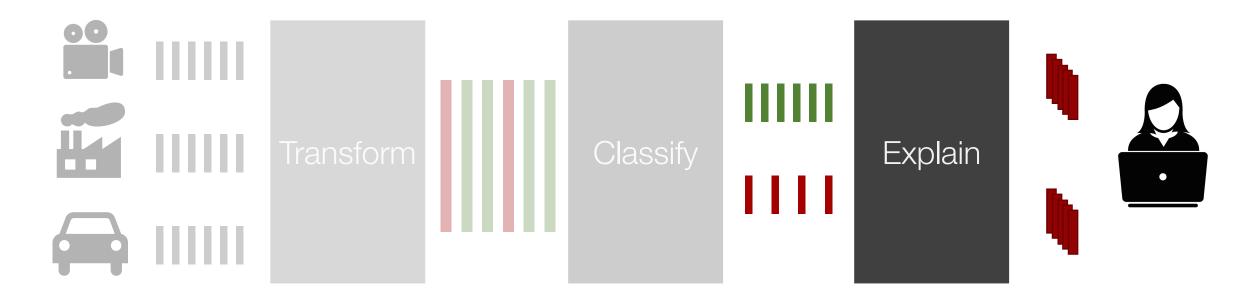


Segment and filter stream by target behavior (e.g., abnormalities)

Default: identify unlikely data points (e.g., via density estimation)

Combine with thresholds, predicates, or custom classifiers

Find underlying causes for classified abnormalities



Explanation

Errors

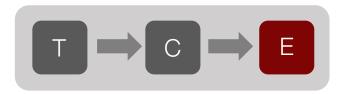
{iPhone7, Canada}
{iPhone7, USA}
{iPhone8, Canada}
{iPhone7, USA}
{iPhone8, Canada}

Canada may have a problem!

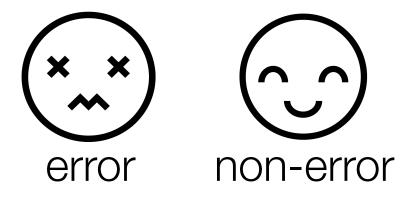
Non-Errors {iPhone8, USA} {iPhone7, USA} {iPhone7, USA} {iPhone7, USA} {iPhone8, USA} {iPhone7, USA} {iPhone7, USA}

Explain classification results by identifying behavior correlated with being filtered

Explanation



Relative Risk Ratio



P(error | Canada) P(error | not Canada) Explain classification results by identifying behavior correlated with being filtered
Default: relative risk ratio based on data attributes

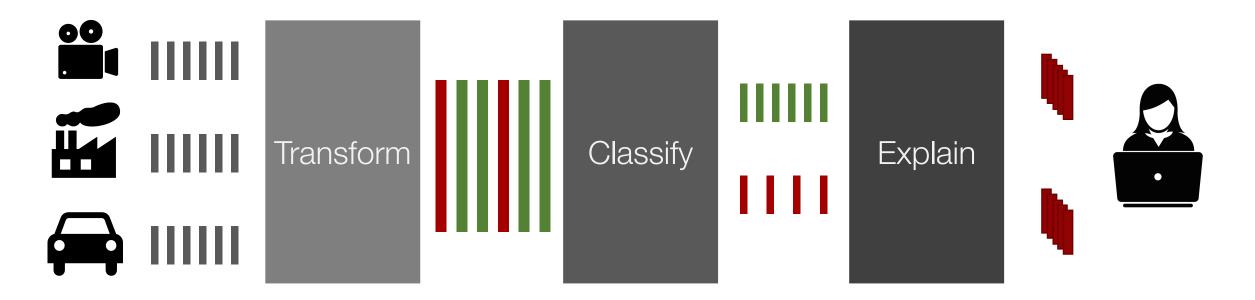
outliers w/ Canada

tuples w/ Canada

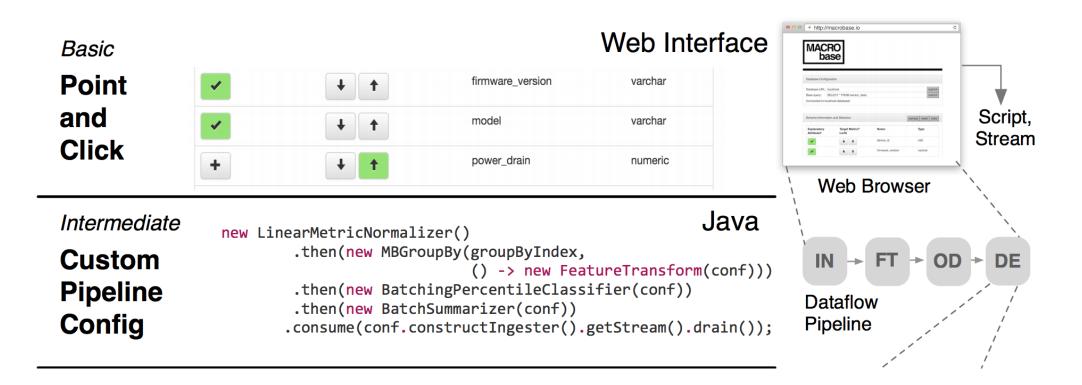
outliers w/out Canada

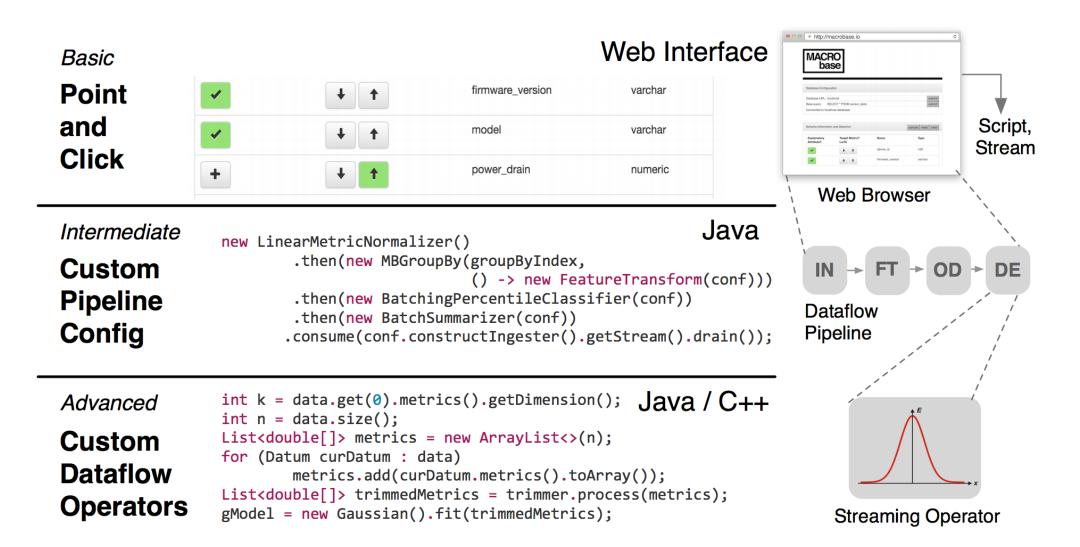
tuples w/out Canada

Execute operator cascades to transform, segment, aggregate streams



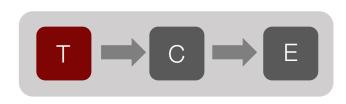
Basic				Web Interface	MAC	RO			1
Point	×	+ t	firmware_version	varchar	Dirátes Congrator Detes VII. Social XI. Ren una Statul II. Domenia Successiona ataces			submit service	
and	×	+	model	varchar	Scherts Informatik Explanatory Amitouter?	on and Selection Target Metric? La/Hi	Name device_id	sample result clear	Script, Strean
Click	+	+ t	power_drain	numeric		• •	Brow	varcher	





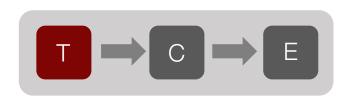
Usage-JSON Rest API

```
"inputURI": ...,
 "metric": "Percentile Dropped records",
 "classifier": "quantile",
 "cutoff": 1.0,
 "includeHi": true,
 "includeLo": false,
 "attributes": ["SDK Version", "Network Type", "App Version",
       "OS Version", "Device"],
 "minSupport": 0.005,
 "minRatioMetric": 1.5
}
```



Principal Component Analysis

Core dimensionality reduction operator for many applications

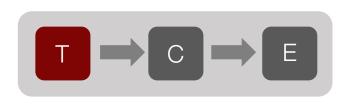


Principal Component Analysis

Core dimensionality reduction operator for many applications

Out-of-the-box implementations are extremely slow

O(min[mn²,nm²]) via singular value decomposition



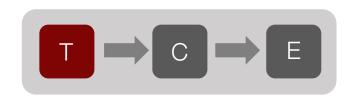
Principal Component Analysis

Core dimensionality reduction operator for many applications

Out-of-the-box implementations are extremely slow

O(min[mn²,nm²]) via singular value decomposition

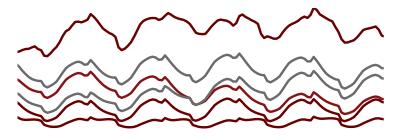
Two insights enable significantly faster performance in practice even with naïve PCA implementations



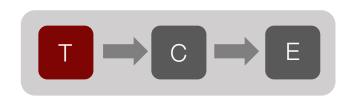


Variable Star Brightness

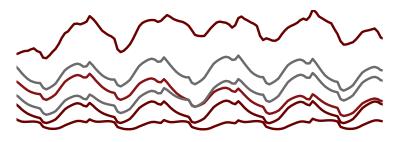
Data sources are structured; sample prior to model



Fan Power Consumption



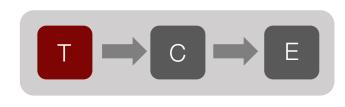
Variable Star Brightness

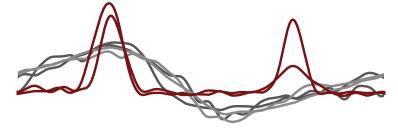


Fan Power Consumption

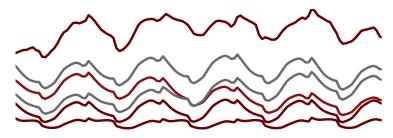
Data sources are structured; sample prior to model

Dimensionality reduction is a preprocessing step; sample until too expensive





Variable Star Brightness



Fan Power Consumption

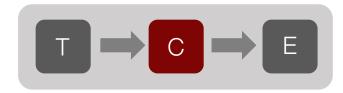
Data sources are structured; sample prior to model

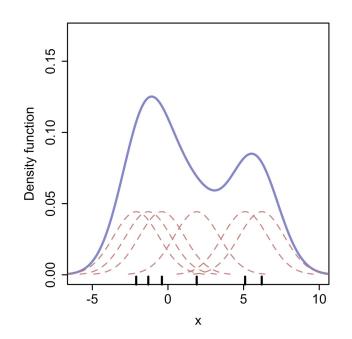
Dimensionality reduction is a preprocessing step; sample until too expensive

50x speedup in dimensionality reduction, and 33x speedup in end-to-end pipelines compared to PCA via SVD

Kernel Density Estimation

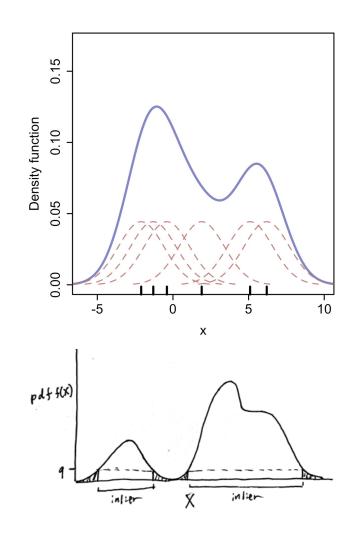
Each point contributes a small "kernel" Asymptotically optimal estimation





Kernel Density Estimation

Each point contributes a small "kernel" Asymptotically optimal estimation



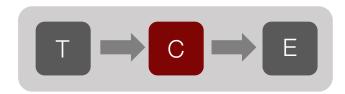
[Gan and Bailis, SIGMOD 2017]

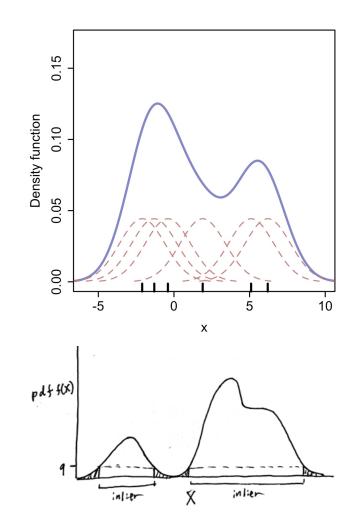
Kernel Density Estimation

Each point contributes a small "kernel" Asymptotically optimal estimation

Compute density: O(n²)

500K points: 2 hours on 2.4GHz CPU!





Kernel Density Estimation

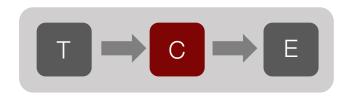
Each point contributes a small "kernel" Asymptotically optimal estimation

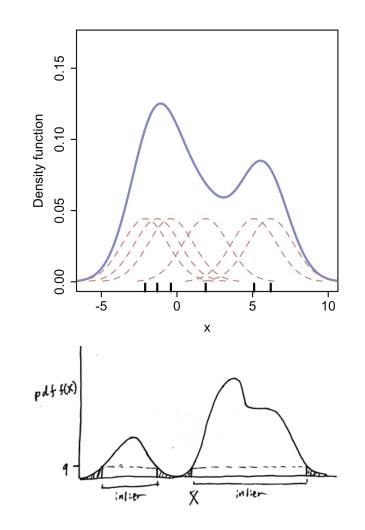
Compute density: O(n²)

500K points: 2 hours on 2.4GHz CPU!

Can we do better?

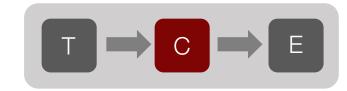
[Gan and Bailis, SIGMOD 2017]

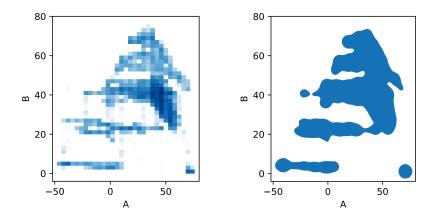




Classification: only need to tell whether above or below target

Don't need to compute exact densities!



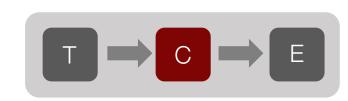


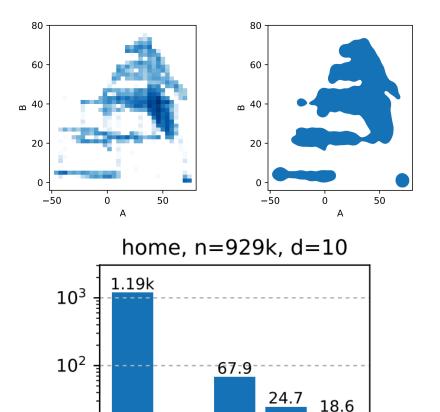
Classification: only need to tell whether above or below target

Don't need to compute exact densities!

Use branch and bound: 2 orders of magnitude speedup

[Gan and Bailis, SIGMOD 2017]

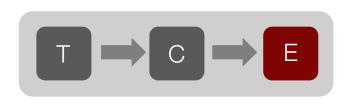




10.3

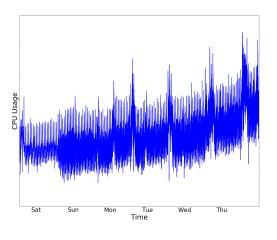
 10^{1}

Efficient Parameter Search in Time Series Visualization



Time Series Smoothing

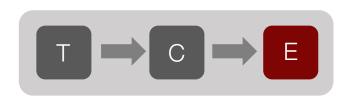
Raw time series are hard to read



Original: noisy

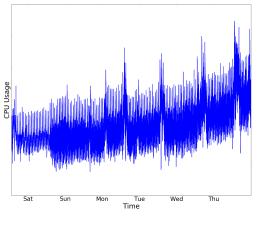
[Rong and Bailis, VLDB 2017]

Efficient Parameter Search in Time Series Visualization

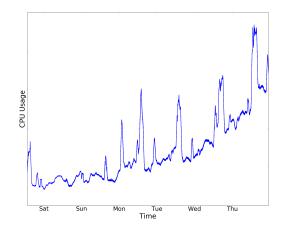


Time Series Smoothing

Raw time series are hard to read; Smoothing can help!



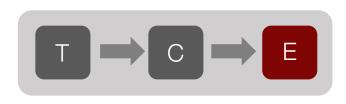
Original: noisy



Good: retains "outlyingness"

[Rong and Bailis, VLDB 2017]

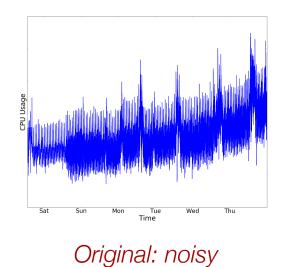
Efficient Parameter Search in Time Series Visualization

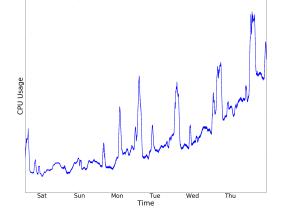


Time Series Smoothing

Raw time series are hard to read; Smoothing can help!

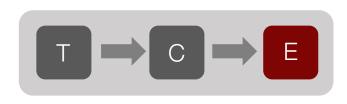
Challenge: Automatically choose smoothing parameters





Good: retains "outlyingness"

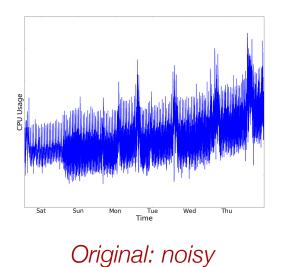
[Rong and Bailis, VLDB 2017]



Time Series Smoothing

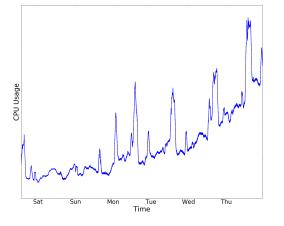
Raw time series are hard to read; Smoothing can help!

Challenge: Automatically choose smoothing parameters



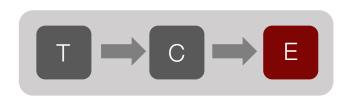
Sat Sun Mon Tue Wed

Bad: loses "outlyingness"



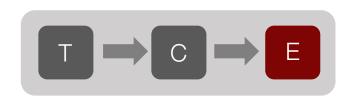
Good: retains "outlyingness"

[Rong and Bailis, VLDB 2017]



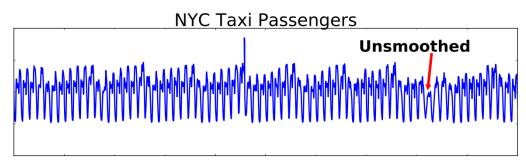
Time Series Smoothing

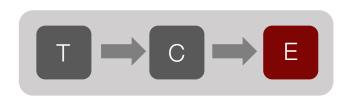
• Formulate as optimization problem: Smooth as much as possible while preserving long-term deviations



Time Series Smoothing

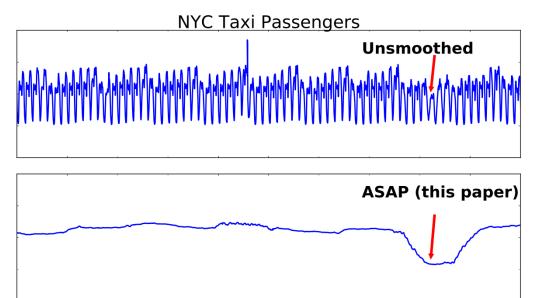
• Formulate as optimization problem: Smooth as much as possible while preserving long-term deviations





Time Series Smoothing

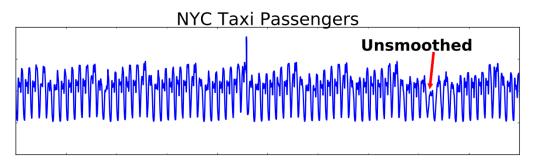
Smooth as much as possible while preserving long-term deviations

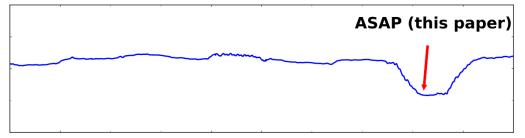


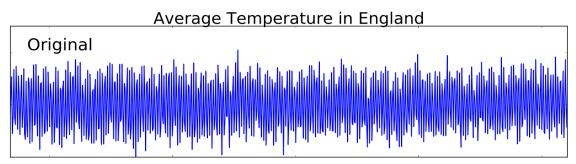


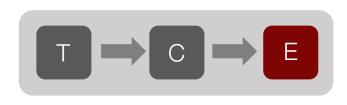
Time Series Smoothing

Smooth as much as possible while preserving long-term deviations



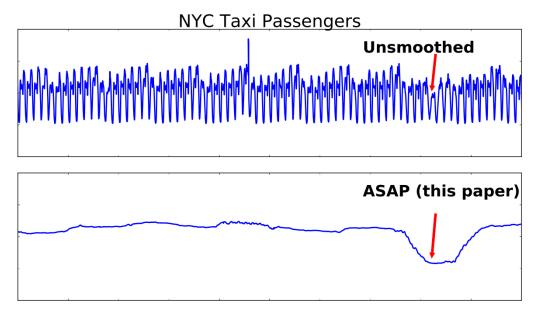


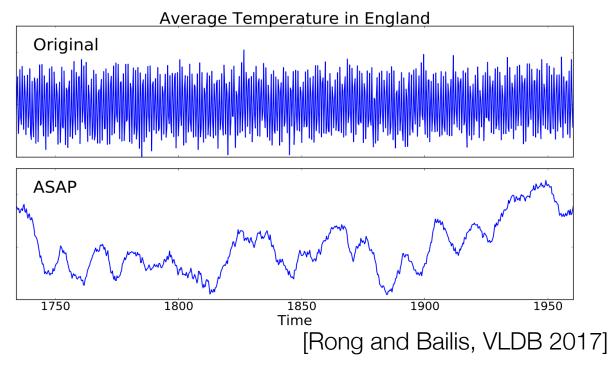




Time Series Smoothing

Smooth as much as possible while preserving long-term deviations





CIDR17, SIGMOD17: Overview of Preceding

Prioritizing Attention in Fast Data: Principles and Promise

Peter Bailis, Edward Gan, Kexin Rong, Sahaana Suri Stanford InfoLab

ABSTRACT

While data volumes continue to rise, the capacity of human attention remains limited. As a result, users need analytics engines that can assist in prioritizing attention in this *fast data* that is too large for manual inspection. We present a set of design principles for the design of fast data analytics engines that leverage the relative scarcity of human attention and overabundance of data: return fewer results, prioritize iterative analysis, and filter fast to compute less. We report on our early experiences employing these principles in the design and deployment of MacroBase, an open source analysis engine for prioritizing attention in fast data. By combining streaming operators for feature transformation, classification, and data summarization, MacroBase provides users with interpretable explanations of key behaviors, acting as a search engine for fast data.

1. INTRODUCTION

In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes. What information consumes is rather obvious: it consumes the attention

MacroBase: Prioritizing Attention in Fast Data

Peter Bailis, Edward Gan, Samuel Madden[†], Deepak Narayanan, Kexin Rong, Sahaana Suri Stanford InfoLab and [†]MIT CSAIL

ABSTRACT

As data volumes continue to rise, manual inspection is becoming increasingly untenable. In response, we present MacroBase, a data analytics engine that prioritizes end-user attention in high-volume *fast data* streams. MacroBase enables efficient, accurate, and modular analyses that highlight and aggregate important and unusual behavior, acting as a search engine for fast data. MacroBase is able to deliver order-of-magnitude speedups over alternatives by patimizing the combination of analysetion and elacetion tasks However, the design and implementation of this infrastructure is challenging; current analytics deployments are a far cry from this potential. Today, application developers and analysts can employ a range of scalable dataflow processing engines to compute over fast data (over 20 in the Apache Software Foundation alone). However, these engines leave the actual implementation of scalable analysis operators that prioritize attention (e.g., highlighting, grouping, and contextualizing important behaviors within fast data) up to the application developer. This development is hard: fast data analyses must

Prioritizing Attention in Fast Data

Demo

Architecture + Usage

A Relational Algebra for MacroBase

Next Generation: Declarative Algebra

Is there a more general interface for composing MacroBase queries, and combining with external analytics operators?

Like SQL!

Our proposal: the **DIFF** operator find the differences between two relations

percentile defined by user

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md

percentile defined by user

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md

percentile defined by user

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md SELECT * FROM

DIFF

(SELECT * FROM md WHERE bd_percentile > 0.95) as outliers, (SELECT * FROM md WHERE bd_percentile <= 0.95) as inliers</pre>

percentile defined by user

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md SELECT * FROM

DIFF

(SELECT * FROM md WHERE bd_percentile > 0.95) as outliers, (SELECT * FROM md WHERE bd percentile <= 0.95) as inliers</pre>

ON

app_version, hw_make, hw_model, firmware_version


```
# percentile defined by user
```

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md
 SELECT * FROM

```
DIFF
```

(SELECT * FROM md WHERE bd_percentile > 0.95) as outliers, (SELECT * FROM md WHERE bd_percentile <= 0.95) as inliers ON

```
app_version, hw_make, hw_model, firmware_version
COMPARE BY risk_ratio(COUNT(*)) AS rr
```


percentile defined by user

WITH SELECT *, percentile(battery_drain) as bd_percentile FROM mobile_data as md
SELECT * FROM

DIFF

(SELECT * FROM md WHERE bd_percentile > 0.95) as outliers, (SELECT * FROM md WHERE bd_percentile <= 0.95) as inliers</pre>

ON

app_version, hw_make, hw_model, firmware_version

```
COMPARE BY risk_ratio(COUNT(*)) AS rr
```

```
WHERE rr > 3.0 and SUPPORT > 0.25
```

LIMIT 25;

MACRODIFF Demo

DIFF: composable with relational algebra

app_version	hw_make	hw_model	firmware_version	risk_ratio	support
v48	HTC	null	4.3.1	25x	20%
null	Lenovo	Lenovo_A390	5.1.1	10x	15%
v50	Emdoor	em_i8180	null	100x	7%

Return normalized relation

Schema of input relations retained, ratio and support attributes added

Composable with downstream SQL queries

DIFF is the new **CUBE**

CUBE lets you slice and dice your data

DIFF tells you **how** to slice and dice your data

Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals

Jim Gray	Microsoft	Gray@Microsoft.com
Adam Bosworth	Microsoft	AdamB@Microsoft.com
Andrew Layman	Microsoft	AndrewL@Microsoft.com
Hamid Pirahesh	IBM	Pirahesh@Almaden.IBM.com

Abstract: Data analysis applications typically aggregate data across many dimensions looking for unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zero-dimensional or one-dimensional answers. Applications need the N-dimensional generalization of these operators. This paper defines that operator, called the data cube or simply cube. The cube operator generalizes the histogram, cross-tabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The points such as temperature, pressure, humidity, and wind velocity. Often these measured values are aggregates over time (the hour) or space (a measurement area).

Table 1: Weather									
Time (UCT)	Latitude	Longitude	Altitude	Temp	Pres				
			(m)	(c)	(mb)				
27/11/94:1500	37:58:33N	122:45:28W	102	21	1009				
27/11/94:1500	34:16:18N	27:05:55W	10	23	1024				

Recent Work

Read our blog posts! http://dawn.cs.stanford.edu/blog

- MacroBase motivation [CIDR 2017]
- MacroBase architecture, sketches [SIGMOD 2017]
- tKDC classification [SIGMOD 2017]
- NoScope video classification [VLDB 2017]
- ASAP time-series visualization [VLDB 2017]
- DROP dimensionality reduction [forthcoming]

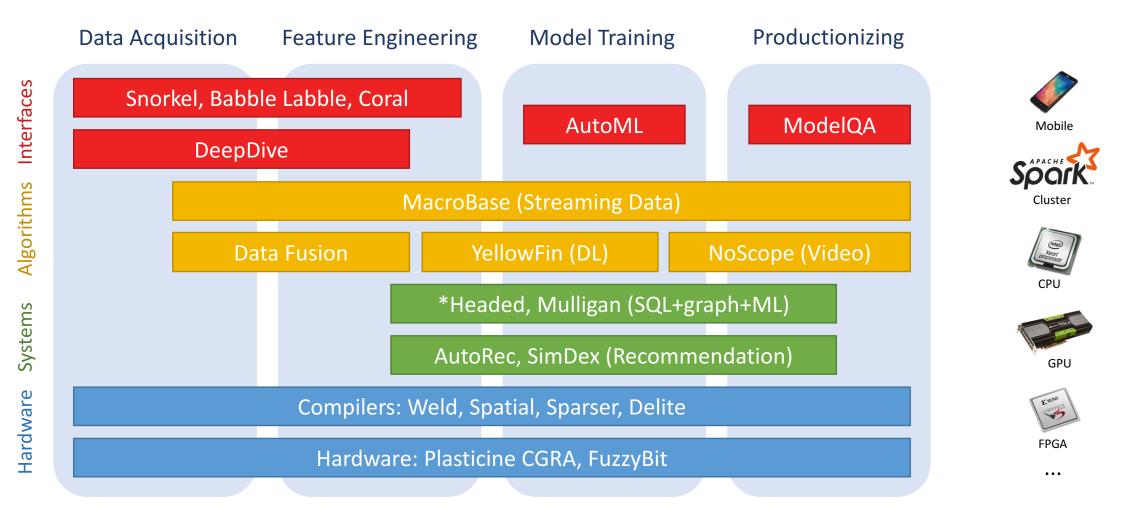
Conclusion

Increasing need for data monitoring demand new tools for prioritizing human attention; dataflow engines are not enough

MacroBase: combine feature extraction, classification, explanation in an end-to-end analytic monitoring engine

https://github.com/stanford-futuredata/macrobase http://dawn.cs.stanford.edu/blog

DAWN Stack



DAWN Stack

