17th Int'l Workshop on High Performance Transaction Systems, Asilomar, 10 Oct 2017 Updated Slides from 37th IEEE International Conference on Distributed Computing Systems (ICDCS), Atlanta, 6 June 2017 & from 43rd International Conference on Very Large Data Bases (VLDB), Munich, 29 August 2017

Blockchains and Databases: A New Era in Distributed Computing

C. Mohan

IBM Fellow Distinguished Visiting Professor Tsinghua University, Beijing

IBM Almaden Research Center, San Jose, USA

@seemohan cmohan@us.ibm.com http://bit.ly/CMwlkP

and the second second	-		_		-
	_	_		-	_
		_		_	
	-	_		_	
_	_				-
	_	_	_		-

Agenda (VLDB 2017 Tutorial Version)

Goal: Educate DB people about private/permissioned blockchains (BCs) to convince them to get more involved to improve them

- Origin of blockchains
- Related distributed systems/databases topics
- Evolution: Private BCs, Smart Contracts, …
- Applications
- Market Scene
- Benchmarks
- Architectural Choices and Relationship to DB Replication
- Technical Details of Representative Systems: Enterprise Ethereum, Hyperledger Fabric, R3 Corda, BigchainDB, Sawtooth, Ripple
- Futuristic Topics

Blockchain (BC)

- Origin in digital currencies, in particular Bitcoin (Satoshi Nakamoto, 2008) anonymity, open/public/permissionless environment
- Numerous organizations across the world working on various aspects of it: security, consensus, database, benchmarks, verification, ...
- Banks, regulators, universities, startups, big technology companies, services companies, governments, ... individually or as part of consortia
 - February 2017: First commercial deployment of BC technology by IBM and Guernsey's Northern Trust for admin of private equity fund managed by Unigestion
 - July 2017: Hyperledger Fabric 1.0 Released
 - Hyperledger Fabric on IBM Cloud IBM Blockchain Platform (formerly HSBN) on highly secure Linux on mainframes (System Z) with security hardware – announced August 2017
 - > 10/2017: Oracle announced Blockchain Cloud Service (BCS) Fabric 1.0 based
- Grand View Research: Global BC Tech Market **\$7.74B** by 2024
- My focus: Private/Permissioned BC Systems!

Problem Being Solved

Recording of events is becoming much more complex...

... Inefficient, expensive, vulnerable, lack of transparency

In concession of the		- 1		
			-	
			-	
	_	_	_	-

Basic Change to Business Processes

... Inefficient, expensive, vulnerable

... Consensus, provenance, immutability, finality

-	_	_	· · · · · · · · · · · · · · · · · · ·	
 	_	_		
			_	
_		_	_	
			_	

Blockchain for Business

Business terms embedded in transaction database & executed with transactions

All parties agree to network verified transaction

... Broader participation, lower cost, increased efficiency

C. Nohan, HPTS Asilomar, 2017-10-09

	_		
	_		
_	_	_	_
	-		
			-

Overview of Application Flow

- Developers create application and smart contracts (chaincodes)
 - Chaincodes are deployed on the network and control the state of the ledger
 - Application handles user interface and submits transactions to the network which call chaincodes
- Network emits events on block of transactions allowing applications to integrate with other systems

Blockchain Applications

- Track provenance, ownership, relationships & lineage of assets
- Supply Chain Food Safety (Walmart), Logistics (Maersk)
- Health Data Exchange (FDA)
- Know Your Customer
- Derivatives Processing
- Trade/Channel Finance (IGF)
- Trade Information Warehouse (DTCC)
- Post-Trade Reconciliation/Settlement
- Private Equity Fund Management (Unigestion)
- Syndicated Loans
- Diamond/Valuables Tracking and Protection Provenance Management (Everledger)
- Cross-Border Payment, Payments for/by Unbanked Populations
- Low volume stock trading (JPX)

"Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World", Don Tapscott, Alex Tapscott, ISBN 978-1101980132.

_	_
_	
_	_
	and the second second

Blockchain Companies/Consortia & Banks

New kid on the block

Enterprise Ethereum Alliance is the latest addition to a list of companies and consortiums focused on blockchain where banks serve as investors or partners

Utility Settlement Coin	No. of partners
Global Payments Steering Group	6
Chain	9
Digital Asset Holdings	15
Enterprise Ethereum Alliance	30
R3	81
Ripple	90+
Hyperledger	122
Source: Staff research	

		_
the second s		_
_	_	_
-	_	
		_
		ŧw

Ongoing Industry Projects/Efforts

- 11/2016: R3 open sources Corda
- 2/2017: DTCC (Depository Trust & Clearing Corp) Selects IBM, AXONI and R3 to develop DTCC's distributed ledger solution for derivatives processing – expected to go live in early 2018
- 2/2017: Enterprise Ethereum Alliance launched with Quorum from JP Morgan being open sourced
- 3/2017: Fabric graduates, Incubation to Active
- 7/2017: V1 released
- BigchainDB (Berlin): Starts from DBMS end to add BC features
 - Uses a single RethinkDB Cluster
 - MongoDB support being added

BC Software Stack

Source: Anh Dinh, et al., SIGMOD 2017

	- 1		
		-	_
		-	

Blockchain Architecture/Feature Choices

- Cryptocurrencies Vs Generalized Assets
- Permissionless/Public Vs Permissioned/Private
- Byzantine Vs Non-Byzantine fault model
- Consensus approach: PoW, PoA, PoET, PBFT, …
- SQL Vs NoSQL data stores
- Transactional stores Vs Non-transactional stores
- Versioned/Unversioned state database
- On-Chain Vs Off-Chain data
- Parallelism exploitation during different phases of transaction execution

Good Survey Paper: Untangling Blockchain: A Data Processing View of Blockchain Systems, A. Dinh et al.

Database Replication

- Primary log replay at replica homogeneous systems with full DB replicas, typically done for disaster recovery (DR) backup
- Log capture generates DML statements from what is logged and apply executes those statements (e.g., IBM Q Replication)
 - Can handle non-determinism and partial replicas
 - Requires dependency analysis to leverage parallelism at apply time
 - https://www.ibm.com/developerworks/data/roadmaps/grepl-roadmap.html
- Capture DML statements as issued by application and re-execute them at replica (e.g., H-Store/VoltDB)
 - Cannot handle non-determinism
 - Typically, serial execution of transactions

Upfront (fairly random, unoptimized) ordering of transactions in blockchain systems – leads to all sorts of issues!

	-		_	-
10000		_	_	-
			-	_
			-	
	_			

@seemohan

Benchmark Framework: BLOCKBENCH (NUS)

- Consensus methods: Ethereum (PoW), Fabric (PBFT), Parity (PoA)
- Old version of Fabric (pre-V1)
- Fabric performs better
- Fabric scales well up to 16 nodes

Source: Anh Dinh, et al., SIGMOD 2017

Ethereum

and the second second	-		_		-
	_	_		-	_
		_		_	
	-	_		_	
_	_				-
	_	_	_		-

Hyperledger Fabric Project

- Initiated by IBM with IBM open source ledger contribution (Feb 2016) http://hyperledger-fabric.readthedocs.io/en/latest/
- Significant change in architecture from V0.6 to V1
 - Chaincode trust flexibility
 - Scalability
 - Confidentiality
 - Consensus modularity
- Used PBFT for consensus before V1 Miguel Castro, Barbara Liskov: Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Trans. Comput. Syst. (TOCS), 20(4), 2002.
- Other Hyperledger Projects: Iroha, Sawtooth, Composer, ... https://www.hyperledger.org/
- Customers doing trials: Bank of Tokyo, London Stock Exchange, Maersk, Northern Trust, Walmart

	_	_	_	
	_	_	_	
				_
		_		
			-	
		_		
_	_	_	_	

Fabric V1 Architecture

- Elements of the Architecture
 - Chaincode: System and regular ones. Deploy and Invoke latter.
 - State: Versioned KV model stored in Level DB or CouchDB
 - Ledger data: Blockchain has full state, including history
 - Transactions
- Kafka for Ordering:
 - No Byzantine fault handling
 - Done to improve performance
 - Pluggable consensus permits other methods

Fabric V1 Ledger

supports keyed queries, composite key queries, key range queries, plus full data rich queries (beta in 1.0)

		-	
_	_	_	_
		-	
		-	

Transaction Execution Overview Fabric V1

3 Stage Execution: Endorsement, Ordering, Validation/Commit

- Transaction is sent to the counter-parties represented by Endorsing Peers on their Channel
- Each Peer simulates transaction execution by calling specified Chaincode function(s) and signs result (Read-Write Sets)
- Each Peer may participate in multiple channels allowing concurrent execution
- Ordering Service accepts endorsed transactions and orders them according to the plug-in consensus algorithm then delivers them on the channel
- All (Committing) peers on channel receive transactions: on successful validation, commit to ledger. No chaincode execution.

DBMS Implications

- Simulation concept requires layer between chaincode and State DB having to take on analysis of DBMS calls
 - Update statements split into two: read part and write part
 - Read alone sent to DBMS with modifications to retrieve version #s for items read
 - Writes not sent to DBMS but processed and cached locally doesn't allow for read your own write by chaincode transaction
- During Commit phase, read sets validated by retrieving each item's version # individually and then, if validation succeeds, writes also done one at a time
- Dealing with phantoms requires reexecution of query during commit phase to be sure simulation read set same as read set at Commit time
- Chaincode portability across different State DBMSs hard to do
- Lots of open questions and research issues in this area

and the second second	-	_			-
	_	_			_
		_	-	-	
_	_		Change (_	_
	_	_	-		-

Application Flow with RDBMS (In Progress)

- Developers create application and smart contracts (chaincodes)
 - Chaincodes are deployed on the network and control the state of the ledger
 - Application handles user interface and submits transactions to the network which call chaincodes
- Network emits events on block of transactions allowing applications to integrate with other systems

	- 1			
			_	
			-	
	_	_	_	

Futuristic Topics

- Chaincode portability and power of data APIs
- DBMS enhancements to add BC features
- Standards across BC systems
- Cross channel transactions
- Non-deterministic actions
- Analytics on chaincode data
- Many app design issues
- Design tools for endorsement decisions

Numerous research possibilities for database and distributed systems people in this new era of distributed computing!

	-		
		S	_

More Information

Links to Videos, Slides, Bibliography, Twitter Handles

http://bit.ly/CMbcDB

Follow me on

Twitter, WeChat: @seemohan

Facebook: http://www.facebook.com/cmohan

LinkedIn: http://www.linkedin.com/in/seemohan/

Talk at ACM Bay Area Chapter: 18 October 2017 (Wed)