PETER ALVARO

The Twilight
of the Experts

With a prelude
of myths

Distributed systems are hard

Your distributed system will suffer partial failures.
So it was built to tolerate them.

Will it, though?

Some old myths and a new one

A BO0OK OF

The old gods

The ancient myth: leave it to the experts

Fault tolerance via experts + abstraction

Example: RAID

L

Transparency

Example: RAID

Logical
volumes

Physical
volumes

Fault tolerance via experts + abstraction

Fault tolerance via experts + abstraction

A fact

Composition is hard.
A secret

I’m honestly not sure what to do about it.

An opinion

To hell with tech priesthoods

The old guard

The modern myth: formally-verified distributed components

Specifying

Svstems :

.

Leslie Lamport

A shift

Formal Testing +
methods Fault injection

?

Testing: walking around the black box

“Depth” of bugs

Single Faults Search Space:

100 executions

Consider computation
involving 100 services

“Depth” of bugs

Combination of 4 faults Search Space:

3M executions

Consider computation
involving 100 services

“Depth” of bugs

Combination of 7 faults Search Space:

16B executions

Consider computation
involving 100 services

What could possibly go wrong?

Search Space:
2100 executions

Consider computation
involving 100 services

Random Search

Search Space:
2100 executions

The vanguard: genius-guided Search

Search Space:
27?7

The vanguard

Chaos Engineering

Jepsen Testing

Web-scale applications

Distributed databases

10000s+ of machines

10s of machines

Polyglot

Often closed-source

Availability is king

Correctness is king

Down with the priesthoods

A problem: experts are rare and expensive.
Superusers are one-of-a-kind.

A conjecture: we can imitate the best practices of
experts in software. Here’s how.

How do the experts do it?

Smarties #1: Jepsen testing

Read docs

Observe
executions

Observe Think Act

Smarties #2: Chaos engineering

dx dx s
m¥+b;+kx+,u{:x—y)—f;

dly—z)
A%-i—,u.(y—x] =0

T e) -
Mot B- A=t Ez=f,

Meet teams

Targeted
Observe faults
executions

Observe Think Act

The genius in the loop

The genius in the loop

How do the experts do it?

Observation

How do the experts do it?

Observation

How do the experts do it?

Observation

How do the experts do it?

Observation

How do the experts do it?

Observation

A proof by construction

Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley
palvaro@cs.berkeley.edu

ABSTRACT

Failure is always an option; in large-scale data management sys-
tems, it is practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

‘We propose a novel approach for discovering bugs in fault-tolerant
data t systems: Ji driven fault injection. A lineage-
driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Joshua Rosen
UC Berkeley
rosenville@gmail.com

Joseph M. Hellerstein
UC Berkeley
hellerstein@cs.berkeley.edu

enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
1t is difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management system failures [16, 57] and
bugs [36,49].

Top-down testing approaches—which perturb and observe the
behavior of complex systems—are an attractive alternative to veri-
fication of individual components. Fault injection [1,26,36,44,59]
is the dominant top-down approach in the software engineering
and dependability communities. With minimal programmer in-
vestment, fault injection can quickly identify shallow bugs caused
by a small number of independent faults. Unfortunately, fault in-
jection is poorly suited to discovering rare counterexamples in-
volving complex combinations of multiple instances and types of
faults (e.g., a network partition followed by a crash failure). Ap-

Lineage-driven fault injection The write

is stable
Why did a good thing happen? /\
Consider its lineage. StgeeSAon St%fsﬁson

>

Bcast1 Bcast?2

Client Client

Lineage-driven fault injection

Why did a good thing happen?
Consider its lineage.

What could have gone wrong?
Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

~

Stored on
RepB

Bcast?2

Client

Client

Lineage-driven fault injection

Why did a good thing happen?
Consider its lineage.

What could have gone wrong?
Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

N

Stored on
RepA

Stored on
RepB

Client

Client

What would have to go wrong? The write

is stable

(RepA OR Bcast1) _7 N

Stored on Stored on
RepA RepB

A

Bcast1 Bcast?2

)

Client Client

What would have to go wrong?

(RepA OR Bcast1)
AND (RepA OR Bcast2)

The write
is stable

VMRS

Stored on Stored on

RepA RepB

i

Bcast1 Bcast?2

)

Client Client

What would have to go wrong?
(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

The write
is stable

N

Stored on
RepA

Stored on

RepB

v

Bcast1

Bcast?2

)

Client

Client

What would have to go wrong?

(RepA OR Bcast1)
AND (RepA OR Bcast2)
AND (RepB OR Bcast2)
AND (RepB OR Bcast1)

The write
is stable

N

Stored on
RepA

Stored on

Bcast1

RepB

=<l

Bcast?2

)

Client

Client

Lineage-driven fault injection

Hypothesis: {Bcast1, Bcast2}

The write
is stable

N

Stored on
RepA

Stored on
RepB

Client

Client

Lineage-driven fault injection

(RepA OR Bcast1)
AND (RepA OR Bcast2)
AND (RepB OR Bcast2)
AND (RepB OR Bcast1)

The write
is stable

N

Stored on
RepA

Bcast3

ey

Bg@st 1

Stored on
RepB

X

Client

Client

Lineage-driven fault injection

(RepA OR Bcast1)
AND (RepA OR Bcast2)
AND (RepB OR Bcast2)
AND (RepB OR Bcast1)
AND (RepA OR Bcast3)
AND (RepB OR Bcast3)

s

The write
is stable

N

Stored on Stored on
RepA RepB

Bcast3

Bcast1 Bcast?2

Client

Client Client

Search Space Reduction

Each Experiment finds
a bug, OR

Reduces the
Search space

Lineage-driven Fault Injection

Observation

LDFI Successes
Finding bugs in protocols [SIGMOD’15, HotCloud’17]
Finding bugs in large-scale applications [SoCC’16]
Finding funding! [NSF CAREER 2017-2021]

NETFLIX
UBER

kafku
%, ¢ elastic

Some dreams

Explanations everywhere

Database provenance

s o St
o) —e[1}—={ 5

(c.d) ol tcﬁ,}d)

tc(c.e)
2

e(d,e) + o ‘Cﬁ'ie’)

Call graphs

APIPROXY

API

Consequence

EC_AB EC_YELLOW2 EC_SUB

EC_MH2_GPS_PAGE_BASIS

YELLOW2

Explanations everywhere

Database provenance Call graphs

OS-level provenance? Unstructured logs?

Towards better models

The write
is stable

Client

Remember

1. Composability is the last hard problem
2. To hell with priesthoods!
3. We can automate the peculiar genius of experts

Thanks to our hosts, benefactors and collaborators!

Ziy-oix, UNIVERSITY OF CALIFORNIA

B i ol
NETFLIX

) Berkeley

UNIVERSITY OF CALIFORNIA

(4

B e T l/.
_J__“\ - N

%, elastic

‘h}@
AR

References

e ‘Automating Failure Testing at Internet Scale [ACM SoCC’16]
https://people.ucsc.edu/~palvaro/fit-Idfi.pdf

e ‘Lineage Driven Fault Injection’ [ACM SIGMOD’15]
http://people.ucsc.edu/~palvaro/molly.pdf

e Netflix Tech Blog on ‘Automated Failure Testing’
http://techblog.netflix.com/2016/01/automated-failure-testing.html

https://people.ucsc.edu/~palvaro/fit-ldfi.pdf
http://people.ucsc.edu/~palvaro/molly.pdf
http://techblog.netflix.com/2016/01/automated-failure-testing.html

Alternative title: the circus animals’ dissertation

(in which | reuse all of my old clip art from past talks)

FOLD

Circus animals

A cunning malevolent sentience?

Call
graph
tracing
(e.g. Zipkin)

If you are targeting faults in a non-random way, you have a mental model of the
system’s fault tolerance.

Fault tolerance is redundancy.
Hence your mental model is surely a model of a system’s redundancy.

You have observed the system from the outside, so this model of redundancy
must be built from observations of system behavior (under fault and not).

We can automatically build and maintain such models.

The old guard

The modern myth: formally-verified distributed components

Specifying

Svstems :

.

Leslie Lamport

Eroding assumptions

4.—E*pe'Ft'S
2. Specifications
3. Source code

The vanguard

The emerging ethos: YOLO

Chaos Jepsen
Engineering Testing

Don’t overthink fault injection

APP1

Callee

Lineage-driven Fault Injection

Sl
Recipe: !ﬁ

1. Start with a successful 4. REPEAT

outcome. Work backwards.
2. Ask why it happened: Lineage
3. Convert lineage to a boolean
formula and solve
4. Lather, rinse, repeat Why? Solve

1. Success |[——-— Fail

Encode
2. Lineage 3. CNF

How do we know redundancy when we see it?

Hard question: “Could a bad thing ever happen?”
Easier: "Exactly why did a good thing happen®?”

“What could have gone wrong?”

The vanguard

The emerging ethos: YOLO

Chaos Jepsen
Engineering Testing

Fault-tolerance

(1%
|

s just” redundancy

Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley
palvaro@cs.berkeley.edu

ABSTRACT

Failure is always an option; in large-scale data management sys-
tems, it is practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

‘We propose a novel approach for discovering bugs in fault-tolerant
data t systems: Ji driven fault injection. A lineage-
driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Joshua Rosen
UC Berkeley
rosenville@gmail.com

Joseph M. Hellerstein
UC Berkeley
hellerstein@cs.berkeley.edu

enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
1t is difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management system failures [16, 57] and
bugs [36,49].

Top-down testing approaches—which perturb and observe the
behavior of complex systems—are an attractive alternative to veri-
fication of individual components. Fault injection [1,26,36,44,59]
is the dominant top-down approach in the software engineering
and dependability communities. With minimal programmer in-
vestment, fault injection can quickly identify shallow bugs caused
by a small number of independent faults. Unfortunately, fault in-
jection is poorly suited to discovering rare counterexamples in-
volving complex combinations of multiple instances and types of
faults (e.g., a network partition followed by a crash failure). Ap-

