
PETER ALVARO

The Twilight
of the Experts

With a prelude
of myths

and an appendix
of dreams

Distributed systems are hard

Your distributed system will suffer partial failures.

So it was built to tolerate them.

Will it, though?

Some old myths and a new one

The old gods
The ancient myth: leave it to the experts

Fault tolerance via experts + abstraction

Example: RAID

Example: RAID

Physical
volumes

Logical
volumes

✖Redundancy

Transparency

Fault tolerance via experts + abstraction

Fault tolerance via experts + abstraction

A fact
Composition is hard.

I’m honestly not sure what to do about it.

A secret

An opinion
To hell with tech priesthoods

The old guard

The modern myth: formally-verified distributed components

A shift

Formal
methods

Testing +
Fault injection

Testing: walking around the black box

“Depth” of bugs

Single Faults Search Space:
100 executions

Consider computation
involving 100 services

“Depth” of bugs

Combination of 4 faults Search Space:
3M executions

Consider computation
involving 100 services

“Depth” of bugs

Combination of 7 faults Search Space:
16B executions

Consider computation
involving 100 services

What could possibly go wrong?

Search Space:
2100 executions

Consider computation
involving 100 services

Random Search

Search Space:
2100 executions

The vanguard: genius-guided Search

Search Space:
???

The vanguard

Chaos Engineering Jepsen Testing
Web-scale applications Distributed databases

10000s+ of machines 10s of machines

Polyglot Often closed-source

Availability is king Correctness is king

Down with the priesthoods

A problem: experts are rare and expensive.
Superusers are one-of-a-kind.

A conjecture: we can imitate the best practices of
experts in software. Here’s how.

How do the experts do it?

Smarties #1: Jepsen testing

Targeted
faults

Read docs

Observe
executions

Observe Think Act

Targeted
faults

Smarties #2: Chaos engineering

Meet teams

Observe
executions

Observe Think Act

The genius in the loop

Observation Fault
Injection

The genius in the loop

Observation Fault
Injection

How do the experts do it?

Observation Fault
Injection

A mental
model

How do the experts do it?

Observation Fault
Injection

A mental

model

How do the experts do it?

Observation Fault
Injection

A model
of fault
tolerance

How do the experts do it?

Observation Fault
Injection

A model
of fault tolerance

How do the experts do it?

Observation Fault
Injection

A model of
system
redundancy

A proof by construction

Lineage-driven fault injection

Why did a good thing happen?

Consider its lineage.

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Lineage-driven fault injection

Why did a good thing happen?

Consider its lineage.

What could have gone wrong?

Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Lineage-driven fault injection

Why did a good thing happen?

Consider its lineage.

What could have gone wrong?

Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

What would have to go wrong?

(RepA OR Bcast1)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast2

Client Client

Bcast1

What would have to go wrong?

(RepA OR Bcast1)

AND (RepA OR Bcast2)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

What would have to go wrong?

(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1

Client Client

Bcast2

What would have to go wrong?

(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

AND (RepB OR Bcast1)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Lineage-driven fault injection The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Hypothesis: {Bcast1, Bcast2}

Lineage-driven fault injection The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Bcast3

Client

(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

AND (RepB OR Bcast1)

Lineage-driven fault injection The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Bcast3

Client

(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

AND (RepB OR Bcast1)

AND (RepA OR Bcast3)

AND (RepB OR Bcast3)

Search Space Reduction

Each Experiment finds
a bug, OR

Reduces the
Search space

Lineage-driven Fault Injection

Fault
injectionLDFIObservation

LDFI Successes

Finding bugs in protocols [SIGMOD’15, HotCloud’17]

Finding bugs in large-scale applications [SoCC’16]

Finding funding! [NSF CAREER 2017-2021]

Some dreams

Explanations everywhere
Database provenance Call graphs

Explanations everywhere
Database provenance Call graphs

OS-level provenance? Unstructured logs?

?

Towards better models

 ??

Remember

1. Composability is the last hard problem
2. To hell with priesthoods!
3. We can automate the peculiar genius of experts

Thanks to our hosts, benefactors and collaborators!

References
● ‘Automating Failure Testing at Internet Scale [ACM SoCC’16]

https://people.ucsc.edu/~palvaro/fit-ldfi.pdf

● ‘Lineage Driven Fault Injection’ [ACM SIGMOD’15]
http://people.ucsc.edu/~palvaro/molly.pdf

● Netflix Tech Blog on ‘Automated Failure Testing’
http://techblog.netflix.com/2016/01/automated-failure-testing.html

https://people.ucsc.edu/~palvaro/fit-ldfi.pdf
http://people.ucsc.edu/~palvaro/molly.pdf
http://techblog.netflix.com/2016/01/automated-failure-testing.html

Alternative title: the circus animals’ dissertation
(in which I reuse all of my old clip art from past talks)

FOLD

Circus animals

A cunning malevolent sentience?

A fault
injection
framework
(e.g. FIT)

Call
graph
tracing
(e.g. Zipkin)

If you are targeting faults in a non-random way, you have a mental model of the
system’s fault tolerance.

Fault tolerance is redundancy.

Hence your mental model is surely a model of a system’s redundancy.

You have observed the system from the outside, so this model of redundancy
must be built from observations of system behavior (under fault and not).

We can automatically build and maintain such models.

The old guard

The modern myth: formally-verified distributed components

Eroding assumptions

1. Experts
2. Specifications
3. Source code

The vanguard
The emerging ethos: YOLO

Jepsen
Testing

Chaos
Engineering

Don’t overthink fault injection

Lineage-driven Fault Injection
Recipe:

1. Start with a successful
outcome. Work backwards.

2. Ask why it happened: Lineage
3. Convert lineage to a boolean

formula and solve
4. Lather, rinse, repeat

2. Lineage 3. CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

How do we know redundancy when we see it?

Hard question: “Could a bad thing ever happen?”

Easier: “Exactly why did a good thing happen?”

 “What could have gone wrong?”

The vanguard
The emerging ethos: YOLO

Jepsen
Testing

Chaos
Engineering

Fault-tolerance “is just” redundancy

