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Modern	OLTP	Applications

Large Scale 
Cloud-Based 
Performance is Critical
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Challenges	to	transaction	performance:	
skew	and	workload	variation
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Database	Elasticity	
E-Store	–	manage	skew	and	react	to	variation	

P-Store	–	predictive	modeling	for	time	variation
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E-Store: Elastic Scaling to Adapt to Workload
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Uniform	Workload,	Increasing	Load
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E-Store Elastic DBMS Architecture
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Live	Migration

Elastic	Controller

PlannerLoad	
Monitor

Shared	Nothing	DBMS	(e.g.	H-Store)



A	Case	Study:	B2W	Digital
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3-Day Online Retail Database Workload
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3-Day Online Retail Database Workload
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Elastic Scaling Adapts to Workload
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Reactive Scaling Causes Latency Spikes
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P-Store 
A Predictive Elastic DBMS
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P-Store Architecture
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Live	
Migration

Predictive	Controller

Predictor PlannerLoad	
Monitor

Shared	Nothing	DBMS	(e.g.	H-Store)



Ideal Capacity Actual Servers 
Allocated

Demand
Machine	Capacity
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Demand
Machine	Capacity
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?
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Machine	Capacity
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Options
1. Add	machine(s)
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Options
1. Add	machine(s)
2. Remove	machine(s)
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Options
1. Add	machine(s)
2. Remove	machine(s)
3. No	change
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Options
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Options
1. Add	machine(s)
2. Remove	machine(s)
3. No	change

Challenges
1. Time	to	Reconfigure
2. Effective	Capacity	
3. Cost

Demand
Machine	Capacity

Effective	Capacity
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Time to Reconfigure

• Rate	control:	small	chunks	of	data,	spaced	apart	
• ∃	some	time	D	–	minimum	time	to	move	entire	database	w/	no	
performance	impact
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Effective Capacity
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• What	transaction	rate	can	the	system	support?	
• Max	rate	per	machine:	Q
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Demand
Machine	Capacity

Effective	Capacity

4	machines  
at	t	=	9

Goal:	find	path	with	 
minimal	cost	such	that 
eff.	capacity	>	demand	

Cost	of	{path	to	A	machines	
ending	at	time	t}  

=  
Cost	of	{path	to	B	machines	
ending	at	time	t	–	TimeB→A}	+	

CostB→A 17



Dynamic Programming Algorithm for Planning 
Reconfigurations
• Complexity	∝	#	time	steps	and	max	number	of	machines	needed	
• In	practice:	runtime	<	1	second	
• Greedy	alternatives	don’t	work
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Demand
Machine	Capacity

Effective	Capacity
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Demand
Machine	Capacity

Effective	Capacity

Optimal	Solution  
Total	Cost:	30
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Time Series Prediction

• Diurnal,	periodic	workload,	some	variation	day	to	day	
• Prediction	must	complete	in	seconds-to-minutes	
• We	use	Sparse	Periodic	Auto-Regression	(SPAR)	–	Chen	et	al.	NSDI	‘08
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Evaluation

• Can	we	reduce	resource	usage?	
• Can	we	prevent	latency	spikes?
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Experiments

• 3	Days	of	B2W	workload	run	on	H-Store		
• Cluster	of	10	servers,	6	partitions	per	server	
• About	1	GB	of	shopping	cart	and	checkout	data	
• Track	machines	allocated,	throughput,	latency,	reconfiguration	time	
periods
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Results – Static, Peak Provisioning  
Machines Used: 10
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Results – Static, Average Provisioning  
Machines Used: 4
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Results – Reactive Scaling 
Avg. Machines Used: 4.02	



Results – P-Store with SPAR  
Avg. Machines Used: 5.05	
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Results – P-Store with Exact Provisioning  
Avg. Machines Used: 4.89	
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Results Comparison: CDF of Top 1% of Latency
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Summary: P-Store Evaluation

• Can	we	reduce	resource	usage?	
• Saves	50%	of	computing	resources	compared	to	static	allocation	

• Can	we	prevent	latency	spikes?	
• Superior	performance	compared	to	reactive	approach	

• On	a	real	workload,	P-Store	reduces	resource	usage	while	keeping	
latency	within	application	requirements
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Summary

❖	Real	database	workloads	are	skewed	and	vary	over	time	
❖	Elasticity	enables	management	of	skew	and	adaptation	to	load	
changes	

❖	Predictive	scaling	improves	performance	during	load	changes	
compared	to	reactive	scaling	

Rebecca	Taft	
becca@cockroachlabs.com	
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