Predictive Elastic Database Systems

Rebecca Taft – <u>becca@cockroachlabs.com</u> HPTS 2017

Modern OLTP Applications

Large Scale Cloud-Based Performance is Critical

Challenges to transaction performance: skew and workload variation

Database Elasticity **E-Store** – manage skew and react to variation **P-Store** – predictive modeling for time variation

Uniform Workload, Increasing Load

Uniform Workload, Increasing Load

Uniform Workload, Increasing Load

5

3

0

Part 1 Part 2 Part 3 Part 4 Part 5

Uniform Workload, Increasing Load

Uniform Workload, Increasing Load

Uniform Workload, Increasing Load

Skewed Workload

Transaction Arrival Rate

Uniform Workload, Increasing Load

Skewed Workload

Transaction Arrival Rate

Uniform Workload, Increasing Load

Skewed Workload

E-Store Elastic DBMS Architecture

A Case Study: B2W Digital

3-Day Online Retail Database Workload

Elastic Scaling Adapts to Workload

Reactive Scaling Causes Latency Spikes

P-Store A <u>P</u>redictive Elastic DBMS

P-Store Architecture

Ideal Capacity

Actual Servers Allocated

- Machine Capacity
 Demand
 Effective Capacity
 Options

 Add machine(s)
 - 2. Remove machine(s)
 - 3. No change

Options

- 1. Add machine(s)
- 2. Remove machine(s)
- 3. No change

Challenges

- 1. Time to Reconfigure
- 2. Effective Capacity
- 3. Cost

Time to Reconfigure

- Rate control: small chunks of data, spaced apart
- ∃ some time D minimum time to move entire database w/ no performance impact

Effective Capacity

• What transaction rate can the system support?

Cost

Dynamic Programming Algorithm for Planning Reconfigurations

- Complexity ~ # time steps and max number of machines needed
- In practice: runtime < 1 second
- Greedy alternatives don't work

Time Series Prediction

- Diurnal, periodic workload, some variation day to day
- Prediction must complete in seconds-to-minutes
- We use Sparse Periodic Auto-Regression (SPAR) Chen et al. NSDI '08

Evaluation

- Can we reduce resource usage?
- Can we prevent latency spikes?

Experiments

- 3 Days of B2W workload run on H-Store
- Cluster of 10 servers, 6 partitions per server
- About 1 GB of shopping cart and checkout data
- Track machines allocated, throughput, latency, reconfiguration time periods

Results – Static, Peak Provisioning Machines Used: 10

Results – Static, Average Provisioning Machines Used: 4

Results – Reactive Scaling

Avg. Machines Used: 4.02

Results – P-Store with SPAR

Avg. Machines Used: 5.05

Results – P-Store with Exact Provisioning Avg. Machines Used: **4.89**

Results Comparison: CDF of Top 1% of Latency

- P-Store Exact Prediction - P-Store SPAR - Reactive

Static Allocation – 10 Servers — Static Allocation – 4 Servers

Summary: P-Store Evaluation

- Can we reduce resource usage?
 - Saves 50% of computing resources compared to static allocation
- Can we prevent latency spikes?
 - Superior performance compared to reactive approach
- On a *real* workload, P-Store reduces resource usage while keeping latency within application requirements

Summary

- Real database workloads are skewed and vary over time
- Elasticity enables management of skew and adaptation to load changes
- Predictive scaling improves performance during load changes compared to reactive scaling

Rebecca Taft

becca@cockroachlabs.com

