¥ PERFORMANCE

Wi

Sy

W\ O,/

O
/
5~

QN .
o |

|

N

~)
D

Hardware-driven Undo+Redo Logging

HIGH

TRANSACTION
SYSTEMS

Jishen Zhao
https://users.soe.ucsc.edu/~jzhao/
Computer Engineering, UC Santa Cruz

October 11, 2017

Research Overview
Memory and Storage Systems

* Main research topics Applications
Processing P8y Memory System Software
In Memory = UEiliA)\ Network SW/HW Interface
* Research efforts (P
L Nonvolatile
» Workload characterization DRAM Memory
* Software/hardware cooperative —
mechanisms | Flash S0/ disk |

* Software/hardware interface design Server 1 Server2 Server3 ..
 Hardware-based accelerators

Bridging software ad hardware deSIgn

: H-

Typical memory and storage hierarchy:

tence

Storage Data persis

ing data

==,

Memory Fast access {0 work

| ~ herer
Persistent memory IS !

Nonvolatile random-access memories (NVRAMs)
DDR3 Compatible MRAM DRAM _w/ Ultra-capacitor

\ D =~
R

Hardware
Battery-backed DRAM NV-DIMM

3D Xpoint

Software - Persistent-memory-aware system software
Persistent Memory File SVStem
Persistent M : wetadate | Ol | avomicity (1)
Using DAX in Windowe O Support in 0S m ™ s 2 No
DAX Volume Crréétirdnr . ~ NVM.PM.FILE ACTIONS BPFS Yes oo i
z ;ormat n: /dax /q PMFS v No No
ormat-volume -DriveLetter n * Imp| y kernel _DAX es
,DADi(X Volume Identifica.,_Microsoft : ‘ red h at E):;::s jlo s :(;
:)) z:gcie]tvojurv.leInformation("C:\",) . "-an::tAimize; i:u::erspace Aerie S N Yes
PFilesystemFlags for FILE_DAX_VOLUME (0x20000000 0 Optimized:ﬂush_and_verify -‘ e e
If HA:\UH P 'Stent Memory ’—P
oy ersl ersiste
2 ackup... .
o Aware Database | nt Memory Support Over Fabric

= ¢ PELOTON

CARNEGIE MELLON
f‘i DATABASE GROUP

| ~ herer
Persistent memory Is-comingl-

..but unlocking its full potential isn't easy

Y 7
ﬂf_ Dry it with “Logs” |
|

And copy-on-write, checkpointing, etc. }

e Persistence Native memaory, no pEfSiStEﬂCE

o Used to be a property of storage systems

 Now needs to be maintained in the memory system

System Throughput

[Zhao +, MICRO'13]

Hardware-driven undo + redo Logging

Conbribution & 4y

LQVQ-‘.O‘SQ QXLsﬁ g\g C
scheme to ena le A

ngg""\g , oL undorTedo LOSS}‘«"‘?. - ;é P

wrike or | v
e N ‘ e C

Persistence requirement in cache-memory hierarchy

Update persistent memory
with a transaction

Tx_begin
do some reads
do some computation

write (
Tx_commk

i

Micro-ops:
store (.
store C

Cras%:’ NVRAM [Root

(o
L

)
L1

LLC

U

“NVRAM

Root

j/ﬂ%

Log_(

Preview of performance benefit with undo+redo logging

Undo logging only

Txbegin ™= ndo logging of store A, Tx commit
o
\ Y 1

“Write A” consists of N store instructions

l Redo logging only

Redo logging of thle transaction

Loggig

Write A

—_————. . — Und0+red0 Iogging I N,

" Rlog A, ><_ Rlog A, > Rlog A Rlog A, Tx commit
Wiite A

Memory_barrier

Logging

Time
>

Benefits of undo + redo logging

Micro-ops
store A’,

Transactions: T,, Tg, T,

j store A)
(rash ~ store Ay /
“No force”
AN Undo logging
L Sl A copy of the old value,
Memory barrier _~Can undo the changes

Corrupted!

C

Version 1

NVRAM

made by partiall
oin P y

|
completed transactions

Version 2

Benefits of undo + redo logging

store A
store A

S—
store A’y /

Crash

NVRAM

Transactions: T,, T, T,

CPU Caches

3 @

Undo logging

“No force”
“Steal”

A] (B

Version 1

10

Preview of performance benefit with undo+redo logging

Undo logging only

Txbegin ™= ndo logging of store A, Tx commit
o
\ Y 1

“Write A” consists of N store instructions

l Redo logging only

Redo logging of thle transaction

Loggig

Write A

—_————. . — Und0+red0 Iogging I N,

" Rlog A, ><_ Rlog A, > Rlog A Rlog A, Tx commit
Wiite A

Memory_barrier

Logging

Time
>

11

Inefficiency of logging by software in persistent memory

@ Increased | Extrainstructions Conservative Risks with
it memory traffic | in the CPU pipeline | cache flushes | multithreading?

Transaction T - —
Tx_begin Micro-ops: | Core
do some reads storelog A, | T
do some computation A store log_A, AN

Uncacheable_log(addr(A), / \I
~ Cache flush|
[new_val(A); Micro-ops:
| old_val(A) —| | '™ @\
write A 0ad Al
" dwb //canbedelayed? || |°%°"
Tx_commit
storelog_A,
storelog_A, NVRAM

12

Performance cost of increased memory traffic

—> Better

Transaction Throughput

100%
80%
60%
40%
20%

0%

|deal Performance

Performance Gap

70%
N\

N\

.

Native memory, Persistent memory
No persistence with undo logging

in NVRAM

[Zhao +, MICRO'13]

13

What can we leverage from the hardware?
Cache hierarchy maintains undo + redo information by nature

“Write-back Write-allocate”

New Valie

0ld VaIue\

store A,

Processor

N

hit '
T3 L1 Caches 1SS

Last-level Cache (LLC) =

2
€7

Main Memory

New Value

Uncacheable_log ([addr v]

/0|d Value [new Va| A
4

old_val(A))

14

Our undo-+redo logging: Take a ride given by CPU caching

Maintain the order between log and data updates by nature
storeA, | Logrecord Transaction T,

Tx_begin
do some reads

do some computation

| write A

clwb
Tx_commit

L1/ Caches

| Log buffer (or simply use W(B)
Volatile Last-level Cache (LLC) | Bypass caches

PRI e 5 \./; ______ S 1
b\lonvolatile

@Jmcheable
Undo+Redo Log
NVRAM —~ (Circular Buffer)

15

How about cache flushes?
Decouple cache flushes and transaction execution

Existing in commodity processors Transaction TA
. . b d"t/ dat Tx_begin
Multithreading? | WD dif ClE do some reads
-0 (PU Caches do some computation
Volatile 01 0 | write A)
e T—
‘b\lonvolatile Thelogisa Tx_commit

circular buffer

When is the appropriate time for cache flushes? Trade-offs of hardware

The need for cache flushes depends Dookkeeping overhead
, memory traffic bursts, and
on(og size and(loglupdate speed cache flush frequency

16

Commit the transaction

Design principles
* Undo+redo logging - taking a ride given by CPU caching
* (ache flushes - decoupled from transaction execution

Transaction T,

Tx_begin
do some reads
do some computation
write A

*
Tx_commit

17

Software and hardware implementation cost

* Software support

Transaction interface

Tx_begin
do some reads
do some computation
Write A

Tx_commit

* Hardware overhead

Major Components

Log_create()
Log_truncate()

NVRAM 2

Logic Type

Transaction ID register Flip-flop | 1 byte per HW thread
Log head and tail registers | Flip-flop 16 bytes
Fwb cache tag bit SRAM 1 bit per cache line

18

Key performance results

deal performance

l SW-redo-clwb ™ SW-undo-clwb ™ Qur-design: undo+redo

Transaction Throughput NVRAM Write Traffic

= 100% 89% | 5
£ 080% by l 4
D 0% AP A = 3
0% 1 1 A = 2
20% L = 1
0% - S 0
Avg of five WHISPER Avg of five WHISPER
micro-benchmarks micro-benchmarks

Processor configuration: Core i7, 22nm, 4-core, 2.5GHz, 2 threads/core

Other results: energy consumption, instruction increase,
IPC, sensitivity studies, etc.

19

Summary

* Key points
* Rethink the way traditional software schemes are used

* Exploit opportunities in existing hardware - can support data persistence by
nature

20

¥ PERFORMANCE

Wi

Sy

W\ O,/

O
/
5~

QN .
o |

|

N

~)
D

Hardware-driven Undo+Redo Logging

HIGH

TRANSACTION
SYSTEMS

Jishen Zhao
https://users.soe.ucsc.edu/~jzhao/
Computer Engineering, UC Santa Cruz

October 11, 2017

