
Hardware-driven Undo+Redo Logging

Jishen Zhao
https://users.soe.ucsc.edu/~jzhao/
Computer Engineering, UC Santa Cruz

October 11, 2017

• Main research topics

•  Research efforts

•  Workload characterization

•  Software/hardware cooperative
mechanisms

•  Software/hardware interface design
•  Hardware-based accelerators

Research Overview

2

Bridging software and hardware design

DRAM

CPU

Flash SSD / disk

System Software

Applications

SW/HW Interface

Nonvolatile
Memory

Server 1 Server 2 Server 3 …

Memory and Storage Systems

Persistent
Memory

Processing
In Memory

Memory
Network

Persistent
Memory

Memory Fast access to working data

Fast memory interface + persistence

Typical memory and storage hierarchy:

3

Persistent memory:

Storage Data persistence

Persistent memory is coming!

4

here!

NV-DIMM DDR3 Compatible MRAM DRAM w/ Ultra-capacitor Battery-backed DRAM 3D Xpoint

Persistent Memory
Aware Database

Persistent Memory Support Over Fabric

Persistent Memory Support in OS

Hardware –

Persistent-memory-aware system software

Nonvolatile random-access memories (NVRAMs) Not flash memory…

Software –
Persistent Memory File Systems

5

NVMM file systems are not strongly consistent

• BPFS, PMFS, Ext4-DAX, SCMFS, Aerie

• None of them provide strong metadata and data consistency

File system
Metadata
atomicity

Data
atomicity

Mmap
Atomicity [1]

BPFS Yes Yes [2] No

PMFS Yes No
No

Ext4-DAX Yes No
No

SCMFS No
No

No

Aerie Yes No
No

[1] Each msync() commits updates atomically.

[2] In BPFS, write times are not updated atomically with respect to the write itself.

File system
Metadata
atomicity

Data
atomicity

Mmap
Atomicity [1]

BPFS Yes Yes [2] No

PMFS Yes No
No

Ext4-DAX Yes No
No

SCMFS No
No

No

Aerie Yes No
No

NOVA Yes Yes Yes

And copy-on-write, checkpointing, etc.

•  Persistence
•  Used to be a property of storage systems

•  Now needs to be maintained in the memory system

5

here!

…but unlocking its full potential isn’t easy
Persistent memory is coming!

Native memory, no persistence

Sy
st

em
 T

h
ro

u
g

h
p

u
t

Flash SSD
Memory, w/ persistence

Performance Gap

[Zhao +, MICRO’13]

Hardware-driven undo + redo Logging

6

Opportunity

Contribution 1:
Exploit undo+redo
logging to relax

write order control

Contribution 2:
Leverage existing

 cache

scheme to enable
undo+redo logging

Root

A

B D
Log

NVRAM

L1

LLC

Core
L1

Core
…

… …

C

Persistence requirement in cache-memory hierarchy

7

Root

A

B C D

NVRAM

L1

LLC

Core
L1

Core
…

… …

Tx_begin
 do some reads
 do some computation
 Uncacheable_Rlog (addr(C),
 new_val(C))
 memory_barrier
 write C
Tx_commit

C1’
Micro-ops:
store C’1
store C’2
...

C’

Log_C’

Update persistent memory
with a transaction

Crash

Tx_begin
 do some reads
 do some computation
 Uncacheable_log(addr(A), new_val(A), old_val(A))
 write new_val(A) //new_val(A) = A’
 clwb // can be delayed
Tx_commit

Tx_begin
 do some reads
 do some computation
 Uncacheable_Ulog(addr(A), old_val(A))
 write new_val(A) //new_val(A) = A’
 clwb //force writeback
Tx_commit

Tx_begin
 do some reads
 do some computation
 Uncacheable_Rlog(addr(A), new_val(A))
 memory_barrier
 write new_val(A) //new_val(A) = A’
Tx_commit

…

…

Redo logging of the transaction

Undo logging of store A1

Time

Time

“Write A” consists of N store instructions

Tx commit

Ulog_A1 Ulog_A2 Ulog_AN

store A’1

Logging

store A’1 store A’N

Tx begin

Write A

…
Rlog_A’1 Rlog_A’2 Rlog_A’N

store A’1 store A’1 store A’N
…

clwb A’1..A’N

Tx commit

…

…
Time

Tx commit Rlog_A’1 Rlog_A’2 Rlog_A’N

store A’1 store A’1 store A’N

…
Ulog_A1 Ulog_A2 Ulog_AN

(a)

(b)

(c)

Undo logging only

Redo logging only

Undo+redo logging

Logging

Write A

Logging

Write A

Uncacheable Cacheable

Memory_barrier	

Preview of performance benefit with undo+redo logging

8

Undo logging only

Redo logging only

Undo+redo logging

Benefits of undo + redo logging

9

store A’1
store A’2
…
store A’N
…

A B C

Crash

Corrupted!

Redo logging

Version 1 Version 2

“No force”

Transactions: TA, TB, TC

CPU Caches

A’ B’ C’

RLog_A’

NVRAM

A’

A’1

Micro-ops

Undo logging

 ULog_A

A copy of the old value,
Can undo the changes
made by partially
completed transactions

Memory barrier

Benefits of undo + redo logging

10

A’ B’ C’

store A’1
store A’2
…
store A’N
…

Crash
Redo logging

Version 1

Undo logging

“No force”

“Steal”

A B C

NVRAM
Version 2

 ULog_A

A1

RLog_A’

CPU Caches

Transactions: TA, TB, TC

Uncacheable

Tx_begin
 do some reads
 do some computation
 Uncacheable_log(addr(A), new_val(A), old_val(A))
 write new_val(A) //new_val(A) = A’
 clwb // can be delayed
Tx_commit

Tx_begin
 do some reads
 do some computation
 Uncacheable_Ulog(addr(A), old_val(A))
 write new_val(A) //new_val(A) = A’
 clwb //force writeback
Tx_commit

Tx_begin
 do some reads
 do some computation
 Uncacheable_Rlog(addr(A), new_val(A))
 memory_barrier
 write new_val(A) //new_val(A) = A’
Tx_commit

…

…

Redo logging of the transaction

Undo logging of store A1

Time

Time

“Write A” consists of N store instructions

Tx commit

Ulog_A1 Ulog_A2 Ulog_AN

store A’1

Logging

store A’1 store A’N

Tx begin

Write A

…
Rlog_A’1 Rlog_A’2 Rlog_A’N

store A’1 store A’1 store A’N
…

clwb A’1..A’N

Tx commit

…

…
Time

Tx commit Rlog_A’1 Rlog_A’2 Rlog_A’N

store A’1 store A’1 store A’N

…
Ulog_A1 Ulog_A2 Ulog_AN

(a)

(b)

(c)

Undo logging only

Redo logging only

Undo+redo logging

Logging

Write A

Logging

Write A

Uncacheable Cacheable

Memory_barrier	

Preview of performance benefit with undo+redo logging

11

Undo logging only

Redo logging only

Undo+redo logging

Shared Caches

Core
cache

Memory Controllers

… Core
cache

Processor

A

NVRAM
RLog_A’

undo

redo

Inefficiency of logging by software in persistent memory

12

Tx_begin
 do some reads
 do some computation
 Uncacheable_log(addr(A),
 new_val(A),
 old_val(A))
 write A
 clwb // can be delayed ?
Tx_commit

Micro-ops:
load A1
load A2
…
store log_A1
store log_A2
...

Transaction T
A

:

Increased
memory traffic

Extra instructions
in the CPU pipeline

Risks with
multithreading?

Conservative
cache flushes

ULog_A

RLog_B’ RLog_C’

ULog_B

Micro-ops:
store log_A’1
store log_A’2
...

ULog_C

Cache flush

A’1

A’

Performance cost of increased memory traffic

[Zhao +, MICRO’13]

13

0%
20%
40%
60%
80%

100%

T
ra

n
sa

ct
io

n
 T

h
ro

u
g

h
p

u
t

70%

Native memory,
No persistence

in NVRAM

Persistent memory
with undo logging

Be
tt

er

Ideal Performance
Performance Gap

What can we leverage from the hardware?

14

Cache hierarchy maintains undo + redo information by nature

 Uncacheable_log (addr(A),
 new_val(A),
 old_val(A))

…

…

Memory

Core Core

L1 Caches

Last-level Cache (LLC)

“Write-back Write-allocate”

hit
Old Value

New Value

miss
Old Value

New Value

Main

✓

✓

✓

Processor
store A1

Tx_begin
 do some reads
 do some computation
 write A
 clwb
Tx_commit

Our undo+redo logging: Take a ride given by CPU caching

15

…

… Core Core

L1 Caches

Last-level Cache (LLC)

NVRAM Undo+Redo Log
(Circular Buffer)

Log record

Bypass caches
Log buffer (or simply use WCB)

Volatile

Nonvolatile

Maintain the order between log and data updates by nature
Transaction T

A
 store A1

Uncacheable

Tx_begin
 do some reads
 do some computation
 write A
 clwb
Tx_commit

How about cache flushes?

16

Decouple cache flushes and transaction execution

The log is a
circular buffer

CPU Caches
Volatile

Nonvolatile

0 0
fwb dirty data

0 0
0 0
0 0

1

1

1

1

Transaction T
A

The need for cache flushes depends
on log size and log update speed !

Trade-offs of hardware
bookkeeping overhead,

memory traffic bursts, and
cache flush frequency

When is the appropriate time for cache flushes?

Multithreading?

Existing in commodity processors

Commit the transaction

Design principles
•  Undo+redo logging – taking a ride given by CPU caching
•  Cache flushes – decoupled from transaction execution

17

Tx_begin
 do some reads
 do some computation
 write A
 clwb
Tx_commit

Transaction T
A

Software and hardware implementation cost
•  Software support

•  Hardware overhead

18

Tx_begin
 do some reads
 do some computation
 Write A
Tx_commit

Transaction interface

NVRAM

Log_create()
Log_truncate()

Major Components Logic Type Size

Transaction ID register Flip-flop 1 byte per HW thread

Log head and tail registers Flip-flop 16 bytes

Fwb cache tag bit SRAM 1 bit per cache line

Key performance results

19

0%
20%
40%
60%
80%

100%

No-pers SW-redo-clwb SW-undo-clwb Our-design

Processor configuration: Core i7, 22nm, 4-core, 2.5GHz, 2 threads/core

Transaction Throughput

Be
tt

er

Avg of five
micro-benchmarks

WHISPER
0
1
2
3
4
5

NVRAM Write Traffic

Better
Avg of five

micro-benchmarks
WHISPER

56%

89%

Ideal performance
: undo+redo

Other results: energy consumption, instruction increase,
IPC, sensitivity studies, etc.

20

Summary

•  Key points
•  Rethink the way traditional software schemes are used
•  Exploit opportunities in existing hardware – can support data persistence by

nature

Contribution 1:
Exploit undo+redo
logging to relax

write order control

Contribution 2:
Leverage existing

 cache

scheme to enable
undo+redo logging

Hardware-driven Undo+Redo Logging

Jishen Zhao
https://users.soe.ucsc.edu/~jzhao/
Computer Engineering, UC Santa Cruz

October 11, 2017

