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state of the world we live in today



storage chips in the usec era
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Z-NAND storage chips are 8x slower than Optane
memory, and 15x faster than existing NAND chips. .


https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/2
https://dl.acm.org/authorize.cfm?key=N686304

SSDs in the psec era
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Samsung Z-NAND Intel Optane
SSDs equipped with Z-NAND & Optane deliver at
best 5x & 20x the read latency of the underlying
storage chip, respectively.


https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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Not going to show numbers here.

Latency is of the same order as storage
chip latency for fast interconnects.

Fast network-attached storage (RDMA-
based) just adds to the latency of direct-
attached storage (PCle).



ftls in the pusec era ...
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random writes- source: AnandTech

Intel Optane
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random writes- source: AnandTech

ftls in the pusec era ...

Samsung SSD with Z-NAND Intel Optane
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... have even more drastic impact on throughput!
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https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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sources: Faster |10 through io uring &
Efficient I/O with io uring & J.Axboe

linux 10s in the psec era
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separation of control & data plane in linux now, POSIX out
zero copy & minimized synchronization overhead


https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/
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the benefits of fast storage wasted by
- data movement overheads

(from device to host & across network)

- black-box generic flash-translation layers
- multitude of software layers

how do we prevent these?



back when | was 10

Put Everything Basic Argument for x-Disks
in Future (DISk) Controllers ® Future disk controller is a super-computer.

. . . » 1 bips processor
(it’s not “if”, it’s “when?”) »128 MB dram

» 100 GB disk plus one arm

® Connects to SAN via high-level protocols
» RPC, HTTP, DCOM, Kerberos, Directory Services,....
»» Commands are RPCs
»>management, security,....

Jim Gray

http://Iwww.research.Microsoft.com/~Gray

Acknowledgements:
Dave Patterson explained this to me a year ago » Services file/web/db/... requests
Kim Keeton » Managed by general-purpose OS with good dev environment
Erik Riedel

these arguments

Catharine Van Ingen

‘Helped me sharpen
»need programming environment in controller

Move apps to disk to save data movement ]

Jim Gray, NASD Talk, 6/8/98
http://iimgray.azurewebsites.net/jimgraytalks.htm
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8-core ARMvS8 processor

32GB DRAM

2TB+ of NVM via M.2 slots

e
/f/////////f//////////////////)/f ‘

4x 10Gb Ethernet

Dragon Fire Card (DFC) o

_ ® Future disk controller is a super-computer.
https://github.com/DFC-OpenSource/ »1 bips processor E ;

» 128 MB dram
» 100 GB disk plus one arm
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SSD landscape

filesystem :
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kv-store needs to change when you
start pushing functionality down!

storage manager
based on POSIX

storage manager

based on lightkv

custom
key-value store

kv-store
upper layers

kv-store
upper layers

storage manager
with push-down

storage manager
based on lightkv

storage

network
interface

lightovm |

JpPCle

open-channel
SSD

NIC-based
storage controller

app-specific FTL
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open-channel SSDs
traditional block SSD OCSSD

physical address space exposed

o Host System Host System
* host can make decisions about eemeeaeemeeneeeesnae- :
. - - +  Write Buffering
data placement & 1/0 scheduling I logical Addressing | teeermemseemerreosee s
. (Read/Write) Physical Addressing
SSD management split between Solid-State Drive (Read/Write/Erase)
* back-end (embedded on SSD) Open-Channel
. Block Metadata Solid-State Drive
block metadata & wear levelling . .
f t Write Buffering Block Metadata
( OF warran ee) Wear-leveling Wear-leveling
* front-end (host-based) FTL Frror Handing Error Handing
mapp’ng Of Ioglcal to phys’cal 1 MediaController F 1 MediaController |5
address spaces, overprovisioning, Non-Volatile Media Non-Volatile Media

& garbage collection
separates (application-customizable)

front-end from (media-specific) back-end ;



potential impact

WHAT? HOW?
1/0 isolation computational storage

* host management of device internal  offload CPU

resources for contention avoidance « shield host application from

 control latency predictability complexity of managing the
— beyond NVMe |0 determinism physical space (e.g., flash

resource utilization characteristics)
* controlled data placement to reduce  « co-design of application-

write amplification specific FTL and OCSSD
— beyond NVMe streams

streamline data path
 application-specific FTL



SSD landscape

filesystem :
lightnvm
block layer
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kv-store
upper layers

kv-store
upper layers

storage manager
with push-down

storage manager

based on lightkv

how do we program this to have

storage controller

different application-specific FTLs?

network

interface

{fabric

NIC
JpPCi

open-channel
SSD

NIC-based

storage controller
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core of lvan’s thesis work

programming interface

B

Application ]

App-specific NVMe

Host

Modularized )
FTL
App-specific Programmable Board Upper Layer:
- Mappi
§ Loqupmg Linux Environment Host Interface
- Recovery .
-GC - App-specific NVMe .
- Other Middle Layer:
o

FTL components

MLC, 3D

O\
jlic el
P J/ Driver (e.g. LightNVM)

o 4

Bottom Layer:
NVM abstraction

[ Media (e.g. Open-channel SSD) j
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OX to program storage controllers

https://github.com/DFC-OpenSource/ox-ctrl

Host

OX
Controller

Non-volatile
Memory

Host Linux Kernel and User Space Tools

NVMe Device Driver

_Physical Interconnection (PCle, Network)

SPDK
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OX Host Libraries

Bottom Layer - Media Absfractio

Upper Layer - Transport

PCle RDMA / RoCE Sockets

¥ ¥ 4

Upper Layer - NVMe Specification

NVMe Over PCle NVMe Over Fabrics

Upper Layer - Application Command Parser

NVMe opcodes Fabrics opcodes

Custom opcodes

Middle Layer - Flash Translation Layers

Generic Block FTL Application-specific FTL Other FTLs

Specific Storage Media Managers

(@).4
Upper Layer
OX Core
Channel
Abstraction

Layer

Registration
OX
Middle Layer

OX
Bottom Layer

Physical Interconnection (PCle, Netwark)

Storage Media

Open-channel SSD NAND MLC, TLC, QLC Optane

Other NVM
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: :
deconstructing FTL with OX
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:
conclusion

e need to be careful about data movement
— computational storage would help
e application-specific FTLs would naturally allow
computational storage on SSDs
— use cases:
e LSM (ongoing work in our lab using RocksDB)
e BwTree (what Dave Lomet talked about during gongshow)

® Open issues

— ZNS (zoned namespaces)
— what to push down?

thank you!
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