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state of the world we live in today
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storage chips in the µsec era

Z-NAND storage chips are 8x slower than Optane
memory, and 15x faster than existing NAND chips.

source: AnandTech

transfer time between 
flash memory array & 
on-chip buffers source: Renen et al., DaMoN19

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/2
https://dl.acm.org/authorize.cfm?key=N686304
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SSDs in the µsec era

SSDs equipped with Z-NAND & Optane deliver at 
best 5x & 20x the read latency of the underlying 

storage chip, respectively.

4K random read using fio - source: AnandTech

same as previous

transfer to locally-
attached host

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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interconnects in the µsec era

Not going to show numbers here.

Latency is of the same order as storage 
chip latency for fast interconnects.

Fast network-attached storage (RDMA-
based) just adds to the latency of direct-

attached storage (PCIe). 
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ftls in the µsec era …
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random writes- source: AnandTech
Samsung SSD with Z-NAND

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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ftls in the µsec era …
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… have even more drastic impact on throughput!

Samsung SSD with NAND

random writes- source: AnandTech

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3
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linux IOs in the µsec era

separation of control & data plane in linux now, POSIX out
zero copy & minimized synchronization overhead

SPDK

app
app app

aio

driver

io_uring

sources: Faster IO through io_uring &  
Efficient I/O with io_uring & J.Axboe

memory copy
shared rings
for submissions
and completions
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queue depth

io_uring without polling
aio
io_uring with polling
spdk

4k random reads
3d xPoint

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/


the benefits of fast storage wasted by
- data movement overheads
(from device to host & across network) 
- black-box generic flash-translation layers
- multitude of software layers

how do we prevent these?
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back when I was 10 …
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today …

8-core ARMv8 processor

32GB DRAM

2TB+ of NVM via M.2 slots

4x 10Gb Ethernet

Dragon Fire Card (DFC)
https://github.com/DFC-OpenSource/



SSD landscape
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start pushing functionality down!



open-channel SSDs
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separates (application-customizable)
front-end from (media-specific) back-end

OCSSDtraditional block SSD
physical address space exposed
• host can make decisions about 

data placement & I/O scheduling
SSD management split between
• back-end (embedded on SSD)

block metadata & wear levelling 
(for warrantee)

• front-end (host-based) FTL
mapping of logical to physical 
address spaces, overprovisioning,
& garbage collection



HOW?
computational storage
• offload CPU
• shield host application from 

complexity of managing the 
physical space (e.g., flash 
characteristics)

• co-design of application-
specific FTL and OCSSD

WHAT?
I/O isolation
• host management of device internal 

resources for contention avoidance
• control latency predictability

– beyond NVMe IO determinism
resource utilization
• controlled data placement to reduce 

write amplification
– beyond NVMe streams

streamline data path
• application-specific FTL

14

potential impact



SSD landscape
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how do we program this to have 
different application-specific FTLs?
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programming interface
core of Ivan’s thesis work
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OX to program storage controllers
https://github.com/DFC-OpenSource/ox-ctrl
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deconstructing FTL with OX
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conclusion
• need to be careful about data movement

– computational storage would help

• application-specific FTLs would naturally allow 
computational storage on SSDs
– use cases:

• LSM (ongoing work in our lab using RocksDB)
• BwTree (what Dave Lomet talked about during gongshow)

• open issues
– ZNS (zoned namespaces) 
– what to push down?

thank you!
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