Data-Intensive Systems in

the Microsecond Era

T University of Copenhagen
°Samsung Semiconductor Denmark Research (SSDR)
3UC Santa Cruz
HPTS 06/11/2019

IT UNIVERSITY OF COPENHAGEN

state of the world we live in today

storage chips in the usec era

50 45

) source: AnandTech
Q 40
= transfer time between
> 30
Q flash memory array &
S o
© 20 on-chip buffers source: Renen et al., DaMoN19
© 10 3
& 0.39

0)

48L SLC Z-NAND 48L TLC NAND
Samsung 3D NAND Optane Persistent
Memory

Z-NAND storage chips are 8x slower than Optane
memory, and 15x faster than existing NAND chips. .

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/2
https://dl.acm.org/authorize.cfm?key=N686304

SSDs in the psec era

4K random read using fio - source: AnandTech

= 40 transfer to locally-
8,3’_ attached host
= 30 @ SSD (average)
§ W SSD (99.9th)
© 20 O chip
i same as previous
o 10

0

Samsung Z-NAND Intel Optane
SSDs equipped with Z-NAND & Optane deliver at
best 5x & 20x the read latency of the underlying
storage chip, respectively.

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

' ' | IT UNIVERSITY OF COPENHAGEN.
|ntercon neCtS in the usec era IT UNIVERSITY OF COPENHAGEN

Not going to show numbers here.

Latency is of the same order as storage
chip latency for fast interconnects.

Fast network-attached storage (RDMA-
based) just adds to the latency of direct-
attached storage (PCle).

ftls in the pusec era ...

throughput (MB/s)

2500 1

2000

1500

1000

500

Samsung SSD with Z-NAND

Throughput

l KIOPS A

_/\

\

\

N~

T T T T T T T T
8kB 16kB 32kB 64kB 128kB 256kB 512kB 1MB

transfer size

T T T T
512B 1kB 2kB 4kB

- 80

- 70

- 60

40

30

20

r 10

SdO
throughput (MB/s)

2500

2000

1500

1000

500

IT UNIVERSITY OF COPENHAGEN

random writes- source: AnandTech

Intel Optane

Throughput
H KIOPS

A4

N\

AN

\

T T T T T T T T T T T T
512B 1kB 2kB 4kB 8kB 16kB 32kB 64kB 128kB 256kB 512kB 1MB

transfer size

- 80

- 70

- 60

40

r 30

20

10

SdO

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

IT UNIVERSITY OF COPENHAGEN

random writes- source: AnandTech

ftls in the pusec era ...

Samsung SSD with Z-NAND Intel Optane

2500 1 Throughput 2500

H koPs A o
2000 - 70 2000 | 2o
’J \ 80 /\ - 60
1500 . - -
| \ Samsung SSD with NAND \
. - 40
1000 2500 1 Throughput

\ B KOPS | 80 \ L 30
500 2000 L0 L 20
: [~ \ B

Throughput

B kIOPS
- 80

ut (MB/s)

——

SdO

throughput (MB/s)

@
@ —

0 T T T T T T %’ 1500 - 50 » r T T T T T T T 0
512B 1kB 2kB 4kB 8kB 16kB E_ % B 16kB 32kB 64kB 128kB 256kB 512kB 1MB
transfe ¢ = Jnsfer size
< 1000

g

- 30

L 20

\¥ - 10
0

T T T T T T T T T T y y
512B 1kB 2kB 4kB 8kB 16kB 32kB 64kB 128kB 256kB 512kB 1MB

g

... have even more drastic impact on throughput!

7

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

IT UNIVERSITY OF COPENHAGEN

sources: Faster |10 through io uring &
Efficient I/O with io uring & J.Axboe

linux 10s in the psec era

16
3 4k random reads
5 8 PP 3d xPoint
(%]
> & SPDK,. 12
I shared rings S
__Mmemorycopy|| || || for submissions 3,:"_
g and completions <3
) L/\ aio S io_uringa| c
8E 5 % 5
R _r;é[driver % . driver] 3 = io_uring without polling
____d_ﬁi" _ ____ SR I =4 I I e aio
v = - = =jo_uring with polling
§ SSD SSD Z 0
” B 0 2 4 6
gueue depth

separation of control & data plane in linux now, POSIX out
zero copy & minimized synchronization overhead

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/

IT UNIVERSITY OF COPENHAGEN

the benefits of fast storage wasted by
- data movement overheads

(from device to host & across network)

- black-box generic flash-translation layers
- multitude of software layers

how do we prevent these?

back when | was 10

Put Everything Basic Argument for x-Disks
in Future (DISk) Controllers ® Future disk controller is a super-computer.

. . . » 1 bips processor
(it’s not “if”, it’s “when?”) »128 MB dram

» 100 GB disk plus one arm

® Connects to SAN via high-level protocols
» RPC, HTTP, DCOM, Kerberos, Directory Services,....
»» Commands are RPCs
»>management, security,....

Jim Gray

http://Iwww.research.Microsoft.com/~Gray

Acknowledgements:
Dave Patterson explained this to me a year ago » Services file/web/db/... requests
Kim Keeton » Managed by general-purpose OS with good dev environment
Erik Riedel

these arguments

Catharine Van Ingen

‘Helped me sharpen
»need programming environment in controller

Move apps to disk to save data movement]

Jim Gray, NASD Talk, 6/8/98
http://iimgray.azurewebsites.net/jimgraytalks.htm

10

IT UNIVERSITY OF COPENHAGEN

8-core ARMvS8 processor

32GB DRAM

2TB+ of NVM via M.2 slots

e
/f/////////f//////////////////)/f ‘

4x 10Gb Ethernet

Dragon Fire Card (DFC) o

_ ® Future disk controller is a super-computer.
https://github.com/DFC-OpenSource/ »1 bips processor E ;

» 128 MB dram
» 100 GB disk plus one arm

11

SSD landscape

filesystem :
lightnvm
block layer
T e lpcle fpce lpcle
T open-channel KV-FTL FPGA
SSD SSD SSD FIL | ssp
traditional SSD local OC-SSD KV-SSD FPGA-based
3 pp SpECifiC storage controller
b » static generic
ut no comp.
P FTL

kv-store
upper layers

kv-store
upper layers

IT UNIVERSITY OF COPENHAGEN

kv-store needs to change when you
start pushing functionality down!

storage manager
based on POSIX

storage manager

based on lightkv

custom
key-value store

kv-store
upper layers

kv-store
upper layers

storage manager
with push-down

storage manager
based on lightkv

storage

network
interface

lightovm |

JpPCle

open-channel
SSD

NIC-based
storage controller

app-specific FTL

IT UNIVERSITY OF COPENHAGEN

open-channel SSDs
traditional block SSD OCSSD

physical address space exposed

o Host System Host System
* host can make decisions about eemeeaeemeeneeeesnae- :
. - - + Write Buffering
data placement & 1/0 scheduling I logical Addressing | teeermemseemerreosee s
. (Read/Write) Physical Addressing
SSD management split between Solid-State Drive (Read/Write/Erase)
* back-end (embedded on SSD) Open-Channel
. Block Metadata Solid-State Drive
block metadata & wear levelling . .
f t Write Buffering Block Metadata
(OF warran ee) Wear-leveling Wear-leveling
* front-end (host-based) FTL Frror Handing Error Handing
mapp’ng Of Ioglcal to phys’cal 1 MediaController F 1 MediaController |5
address spaces, overprovisioning, Non-Volatile Media Non-Volatile Media

& garbage collection
separates (application-customizable)

front-end from (media-specific) back-end ;

potential impact

WHAT? HOW?
1/0 isolation computational storage

* host management of device internal offload CPU

resources for contention avoidance « shield host application from

 control latency predictability complexity of managing the
— beyond NVMe |0 determinism physical space (e.g., flash

resource utilization characteristics)
* controlled data placement to reduce « co-design of application-

write amplification specific FTL and OCSSD
— beyond NVMe streams

streamline data path
 application-specific FTL

SSD landscape

filesystem :
lightnvm
block layer
T e lpcle fpce Ipcle
T open-channel KV-FTL FPGA
SSD SSD SSD FIL | ssp
traditional SSD local OC-SSD KV-SSD FPGA-based

kv-store
upper layers

kv-store
upper layers

storage manager
based on POSIX

storage manager
based on lightkv

custom
key-value store

IT UNIVERSITY OF COPENHAGEN

kv-store
upper layers

kv-store
upper layers

storage manager
with push-down

storage manager

based on lightkv

how do we program this to have

storage controller

different application-specific FTLs?

network

interface

{fabric

NIC
JpPCi

open-channel
SSD

NIC-based

storage controller

15

IT UNIVERSITY OF COPENHAGEN

core of lvan’s thesis work

programming interface

B

Application]

App-specific NVMe

Host

Modularized)
FTL
App-specific Programmable Board Upper Layer:
- Mappi
§ Loqupmg Linux Environment Host Interface
- Recovery .
-GC - App-specific NVMe .
- Other Middle Layer:
o

FTL components

MLC, 3D

O\
jlic el
P J/ Driver (e.g. LightNVM)

o 4

Bottom Layer:
NVM abstraction

[Media (e.g. Open-channel SSD) j

16

OX to program storage controllers

https://github.com/DFC-OpenSource/ox-ctrl

Host

OX
Controller

Non-volatile
Memory

Host Linux Kernel and User Space Tools

NVMe Device Driver

_Physical Interconnection (PCle, Network)

SPDK

IT UNIVERSITY OF COPENHAGEN

OX Host Libraries

Bottom Layer - Media Absfractio

Upper Layer - Transport

PCle RDMA / RoCE Sockets

¥ ¥ 4

Upper Layer - NVMe Specification

NVMe Over PCle NVMe Over Fabrics

Upper Layer - Application Command Parser

NVMe opcodes Fabrics opcodes

Custom opcodes

Middle Layer - Flash Translation Layers

Generic Block FTL Application-specific FTL Other FTLs

Specific Storage Media Managers

(@).4
Upper Layer
OX Core
Channel
Abstraction

Layer

Registration
OX
Middle Layer

OX
Bottom Layer

Physical Interconnection (PCle, Netwark)

Storage Media

Open-channel SSD NAND MLC, TLC, QLC Optane

Other NVM

17

: :
deconstructing FTL with OX

Bad Block Checkpoint » Log
Management Recovery T Management

. v v@l

Physical Operations

Garbage Collection

OX Media
Manager

Write Read
| | ™
OX NVMe over Fabrics @ : :
| | . i
User I/OS' Sl [Bare : : Logical Operations
| |
. . | |
Controller Write-caching @ | |
I/Os 1 1 ~ Submission / Completion
- : : Queue
' Block Provisioning : : - ETL
. I 1 = OX Layers
Block Persistent In-memory 1 1
‘ . Metadata . ‘ Mapping Mapping I | 4 0x. > Dependencies
1 I[5]0x.
| |
| |
| |
| |
| |
| |
A

:
conclusion

e need to be careful about data movement
— computational storage would help
e application-specific FTLs would naturally allow
computational storage on SSDs
— use cases:
e LSM (ongoing work in our lab using RocksDB)
e BwTree (what Dave Lomet talked about during gongshow)

® Open issues

— ZNS (zoned namespaces)
— what to push down?

thank you!

	Data-Intensive Systems in the Microsecond Era
	state of the world we live in today
	storage chips in the µsec era
	SSDs in the µsec era
	interconnects in the µsec era
	ftls in the µsec era …
	ftls in the µsec era …
	linux IOs in the µsec era
	the benefits of fast storage wasted by�- data movement overheads�(from device to host & across network) �- black-box generic flash-translation layers�- multitude of software layers��how do we prevent these?
	back when I was 10 …
	today …
	SSD landscape
	open-channel SSDs
	potential impact
	SSD landscape
	programming interface
	OX to program storage controllers
	deconstructing FTL with OX
	conclusion

