
Data-Intensive Systems in
the Microsecond Era

HPTS 06/11/2019

Pınar Tözün1, Ivan Luiz Picoli1,2, Heiner Litz3, Philippe Bonnet1

1IT University of Copenhagen
2Samsung Semiconductor Denmark Research (SSDR)

3UC Santa Cruz

state of the world we live in today

2

3

45

0.39
0

10

20

30

40

50

48L SLC Z-NAND 48L TLC NAND

Samsung 3D NAND Optane Persistent
Memory

re
ad

 la
te

nc
y

(µ
se

c)

3

storage chips in the µsec era

Z-NAND storage chips are 8x slower than Optane
memory, and 15x faster than existing NAND chips.

source: AnandTech

transfer time between
flash memory array &
on-chip buffers source: Renen et al., DaMoN19

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/2
https://dl.acm.org/authorize.cfm?key=N686304

0

10

20

30

40

Samsung Z-NAND Intel Optane

re
ad

 la
te

nc
y

(µ
se

c)

SSD (average)
SSD (99.9th)
chip

4

SSDs in the µsec era

SSDs equipped with Z-NAND & Optane deliver at
best 5x & 20x the read latency of the underlying

storage chip, respectively.

4K random read using fio - source: AnandTech

same as previous

transfer to locally-
attached host

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

5

interconnects in the µsec era

Not going to show numbers here.

Latency is of the same order as storage
chip latency for fast interconnects.

Fast network-attached storage (RDMA-
based) just adds to the latency of direct-

attached storage (PCIe).

6

ftls in the µsec era …
th

ro
ug

hp
ut

 (M
B/

s)

th
ro

ug
hp

ut
 (M

B/
s)

kIO
Ps

kIO
Ps

transfer size transfer size

Intel Optane

random writes- source: AnandTech
Samsung SSD with Z-NAND

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

7

ftls in the µsec era …
th

ro
ug

hp
ut

 (M
B/

s)

th
ro

ug
hp

ut
 (M

B/
s)

kIO
Ps

kIO
Ps

transfer size transfer size

Samsung SSD with Z-NAND Intel Optane

… have even more drastic impact on throughput!

Samsung SSD with NAND

random writes- source: AnandTech

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

8

linux IOs in the µsec era

separation of control & data plane in linux now, POSIX out
zero copy & minimized synchronization overhead

SPDK

app
app app

aio

driver

io_uring

sources: Faster IO through io_uring &
Efficient I/O with io_uring & J.Axboe

memory copy
shared rings
for submissions
and completions

IR
Q

-b
as

ed

po
lli

ng
 o

r I
RQ

-b
as

ed

SSD SSD SSD

po
lli

ng
+d

riv
er

us
er

sp
ac

e
O

S
ke

rn
el

st
or

ag
e

driver

0

4

8

12

16

0 2 4 6 8

la
te

nc
y

(µ
se

c)

queue depth

io_uring without polling
aio
io_uring with polling
spdk

4k random reads
3d xPoint

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/

the benefits of fast storage wasted by
- data movement overheads
(from device to host & across network)
- black-box generic flash-translation layers
- multitude of software layers

how do we prevent these?

9

10

back when I was 10 …

11

today …

8-core ARMv8 processor

32GB DRAM

2TB+ of NVM via M.2 slots

4x 10Gb Ethernet

Dragon Fire Card (DFC)
https://github.com/DFC-OpenSource/

SSD landscape

12

us
er

sp
ac

e
O

S
ke

rn
el

st
or

ag
e

custom
key-value store

KV-SSD

SSD

KV-FTL
PCIe

generic
FTL

app-specific FTL

kv-store
upper layers

traditional SSD

SSD

FTL

filesystem

block layer

PCIe

storage manager
based on POSIX

lightnvm

local OC-SSD

open-channel
SSD

PCIe

kv-store
upper layers

storage manager
based on lightkv

SSD
FPGA

FPGA-based
storage controller

FTL

PCIe

kv-store
upper layers

storage manager
with push-down

NIC-based
storage controller

NIC

lightkv
lightnvm

open-channel
SSD

network
interface

fabric

PCIe

kv-store
upper layers

storage manager
based on lightkv

staticapp-specific,
but no comp.

storage

kv-store needs to change when you
start pushing functionality down!

open-channel SSDs

13

separates (application-customizable)
front-end from (media-specific) back-end

OCSSDtraditional block SSD
physical address space exposed
• host can make decisions about

data placement & I/O scheduling
SSD management split between
• back-end (embedded on SSD)

block metadata & wear levelling
(for warrantee)

• front-end (host-based) FTL
mapping of logical to physical
address spaces, overprovisioning,
& garbage collection

HOW?
computational storage
• offload CPU
• shield host application from

complexity of managing the
physical space (e.g., flash
characteristics)

• co-design of application-
specific FTL and OCSSD

WHAT?
I/O isolation
• host management of device internal

resources for contention avoidance
• control latency predictability

– beyond NVMe IO determinism
resource utilization
• controlled data placement to reduce

write amplification
– beyond NVMe streams

streamline data path
• application-specific FTL

14

potential impact

SSD landscape

15

us
er

sp
ac

e
O

S
ke

rn
el

st
or

ag
e

custom
key-value store

KV-SSD

SSD

KV-FTL
PCIe

kv-store
upper layers

traditional SSD

SSD

FTL

filesystem

block layer

PCIe

storage manager
based on POSIX

lightnvm

local OC-SSD

open-channel
SSD

PCIe

kv-store
upper layers

storage manager
based on lightkv

SSD
FPGA

FPGA-based
storage controller

FTL

PCIe

kv-store
upper layers

storage manager
with push-down

NIC-based
storage controller

NIC

lightkv
lightnvm

open-channel
SSD

network
interface

fabric

PCIe

kv-store
upper layers

storage manager
based on lightkv

how do we program this to have
different application-specific FTLs?

16

programming interface
core of Ivan’s thesis work

17

OX to program storage controllers
https://github.com/DFC-OpenSource/ox-ctrl

18

deconstructing FTL with OX

19

conclusion
• need to be careful about data movement

– computational storage would help

• application-specific FTLs would naturally allow
computational storage on SSDs
– use cases:

• LSM (ongoing work in our lab using RocksDB)
• BwTree (what Dave Lomet talked about during gongshow)

• open issues
– ZNS (zoned namespaces)
– what to push down?

thank you!

	Data-Intensive Systems in the Microsecond Era
	state of the world we live in today
	storage chips in the µsec era
	SSDs in the µsec era
	interconnects in the µsec era
	ftls in the µsec era …
	ftls in the µsec era …
	linux IOs in the µsec era
	the benefits of fast storage wasted by�- data movement overheads�(from device to host & across network) �- black-box generic flash-translation layers�- multitude of software layers��how do we prevent these?
	back when I was 10 …
	today …
	SSD landscape
	open-channel SSDs
	potential impact
	SSD landscape
	programming interface
	OX to program storage controllers
	deconstructing FTL with OX
	conclusion

