Unlocking GPU potential with JIT

Anastasia Ailamaki
with Periklis Chrysogelos and Panos Sioulas

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA EI : L

One hardware does not fit all

Time

>

single-core multi-core multi-core multi-core
single-CPU single-CPU multi-CPU multi-CPU
multi-GPU

Rethink query engines for accelerator-level parallelism

2

One hardware fits all: The end of an efficient story
& CPU Commercial
5 -

GPU Commercial
7 B CPU Prototype

7 GPU Prototype

5
4
3 - g
L -
0 i

> GPU memory - < GPU memory
Data Size

20%-80% throughput loss due to lack of portability .

ExXdowtigh punbe
(vs commercial CPU DBMS)

AN Ly =] =
Designing query engines for heterogeneous HW

A

Portability Performance
>< »
< >
Hardware Hardware
Oblivious Conscious

Decomposition of design space to find sweet spot ‘

AAS ey = L
OLAP in heterogeneous servers: design space

[CIDR2019]

{ intra-operator &

» Performance depends on p-arch
» Tune operators to memory hierarchy specifics

> . ‘M
intra-device #°
» Portability impacted by specialization
» |nject target-specific info using codegen

g inter-device

b Limited device inter-operability
g - * Encapsulate heterogeneity and balance load

Selective obliviousness 5

Inter-device: HetExchange

=]
aggregate

router

[VLDB2019]
e Decouple data- from control-flow . aggregate
e Operators encapsulate trait conversions unpack
ingZCpu

Delegation Heterogeneous Parallelism
Control
Routing Homogeneous Parallelism
Transfer Data Locality
Data
Granularity Execution Granularity

filter filter
6 scan unpack
cpu2gpu
mem-move
router

Optimizer can produce cross-device plans .

=]
aggregate

Device Boundary Crossings

router

aggregate

Cross-device pipelined execution 1 unpack
Hand-over execution to next device 2mem'move
gpu2cpu
Launch kernels/threads, synchronize, backpressure vack
. . filter
Only operators aware of device heterogeneity
unpack
cpu2gpu

mem-move

router

Encapsulate heterogeneous parallelism 7

=]
aggregate

Concurrent Execution

router
aggregate
e Horizontal & Vertical parallelism 1

unpack

* Instantiate pipelines multiple times 2mem'move
gpu2cpu

e Routing policies: load-balance, partition, locality pack

filter

unpack
cpu2gpu
mem-move

router

Encapsulate homogeneous parallelism °

aggregate

Data Transfers

router
aggregate
e Handle memory transfers/prefetching 1

unpack

e Hide memory topology 2"“*“""‘“‘*

gpu2cpu
e Overlap transfers with execution pack

filter

unpack
cpu2gpu
mem-move

router

Hide memory heterogeneity 0

=]
aggregate

Execution Granularity

router

aggregate

Processing: in-registers => tuple-at-a-time 1 unpack
Memory transfers: packets => block-at-a-time 2mem'move

gpu2cpu
Transition between execution granularities pack

. filter

Create homogeneous (reg. policy) packets

unpack

cpu2gpu

mem-move

router

Transition between execution granularities 10

STAC L >

Heterogeneity-aware plans

SELECT SUM(a)
FROM T aggregate
WHERE b >42
' Logical plan router
aggregate gpu2cpu
filter aggregate
filter . Efficiency

unpack &
HetExchang'e cpuzeps Operator portability

mem-move

router

segmenter

SELECT SUM(a)
FROM T
WHERE b > 42

HetExchange in a JITed engine

aggregate

' Logical plan router

aggregate gpu2cpu
filter aggregate
filter
scan
unpack
cpu2gpu
HetExchange
T mem-move
[pipeline id
1 CPU pipeline
[1GPU pipeline router
0 0 instances segmenter

Generate pipelines an

JT

device|i|

crossing

device
crossing

H

8

10
1

]

3

&

u

n

routing point

(ﬁnstantiate

routing point

12

aggregate

filter

unpack

cpu2gpu

device|

cros§ﬁqé___ah\§\\\\““*--\

13

Device providers

lfunction ufr_cpu(data_block, N, state)

CPU Ilocal acc <« 0
Provider i =0 to N - 1_|
I t — data block[l]
def unpack_filter_reduce (data_block , N, of t.a > 42
state) local_acc < local_acc + t.b
I local acc < 0 ‘nh_acc <+ local_acc

for i = threadldInWorker to N — 1 with
step #threadsInWorker

t < data_block|1i] ‘
iF s> 42 lgpu_kernel ufr_gpu(data_block, N, state)

local_ acc « local_acc + t.b Ilocal acc < 0 : _
local_acc for 1 = threadldInGrid to N — 1 with

if thread neighborhood leader step gridSize
atomic_a state.acc, mh-acc)f t data_block[i]

if t.a > 42
local_acc <« local_acc + t.b
Srlj)bjider nh acc < threadblock_reduce(local_acc
F threadld = 0 |

atomicAdd (state.acc, nh_acc)

state.acc <« state.acc + nh.accl

Inject target-specific info using the JIT infrastructure =

Device-optimized operators

e Same challenges r > 5 =
e Similar algorithms vartitioned > °¢ radix-b B< sort-mergep<
e Different mappings i

Fanout: L1 & TLB size

Placement during probe: L1

‘ Boncz et al.
[VLDB1999]

Reuse algorithms, specialize mappings to hardware -

Hardware-dependent JIT code

r P = =
Hardware-aware algorithm |paritioned ™ ™ radix-ba 5 sort-merge &

_ _ _ _ radix-join
Device-independent implementation
ScCan SCan

Radix-join Radix-j _]011’1
N ¥ /it

CPU GPU
Prov1der Provider

Device-optimized
implementation

“ cpu radix-join gpu radix-join

Lower generic description to device-specific code 16

AIAS ey = L
Experimental Setup

e 2x Intel Xeon E5-2650L v3 12-core @ 1.80GHz, 256GB RAM
e 2x NVIDIA GeForce GTX1080, 8GB, PCle3 x16 per GPU

e DBMS C/G: state-of-the-art commercial DBMS
— DBMS C: CPU-based, vector-at-a-time, SIMD, based on MonetDB/X100
— DBMS G: GPU-based, JIT engine

17

Performance on CPU-resident data

SSB SF1000, 600GB CSV
working set: 92-138GB / query

=
(9
o

Execution Time (s)
=
o o
|

o

DBMS C Proteus Proteus Projected Proteus DBMS G
CPUs Hybrid GPUs

Hybrid throughput = 88.5% (CPU-only + GPU-only), on average

A glimpse into the future

e Effect of interconnects and GPU compute power
e Access to high-throughput network

19

100

S o)) (00)
o o o

Execution time (s)
N
o

Adapting access method to query

[CIDR2020]

SSB SF1000, 600GB CSV

working set: 92-138GB / query

2GPUs per configuration
GPU-only execution

PCle-GeForce PCle-Tesla

NVLink-Tesla
Interconnect technology and GPU type
Up to 45% speed-up by tuning access method to hardware

Towards placing the CPU on the side

~32GBps
e Shared & limited PCle buses to NIC/GPU
e Similar intra/inter-server BW ~12GBps
~12GBps ~12GBps

e Direct NIC-GPU access (RDMA)

Remote machine Remote machine
Remote storage Remote storage

Avoid CPU bottleneck => Device-centric OLAP engines =

JIT unleashes ALP

Run on all available devices
Relational operators oblivious to heterogeneity
Fast: Inject target-specific information through codegen

Result: 5x-10x versus CPU-/GPU-specialized systems

Thank you!

22

