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One hardware does not fit all

2Rethink query engines for accelerator-level parallelism
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One hardware fits all: The end of an efficient story

20%-80% throughput loss due to lack of portability



Designing query engines for heterogeneous HW

4Decomposition of design space to find sweet spot
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OLAP in heterogeneous servers: design space

5Selective obliviousness

intra-operator

inter-device

intra-device

Performance depends on μ-arch

Portability impacted by specialization 
Inject target-specific info using codegen

Limited device inter-operability
Encapsulate heterogeneity and balance load
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Tune operators to memory hierarchy specifics

[CIDR2019]



Optimizer can produce cross-device plans

Inter-device: HetExchange
• Decouple data- from control-flow
• Operators encapsulate trait conversions
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Flow Scope Trait

Control
Delegation Heterogeneous Parallelism

Routing Homogeneous Parallelism

Data
Transfer Data Locality

Granularity Execution Granularity
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Device Boundary Crossings

• Cross-device pipelined execution

• Hand-over execution to next device

• Launch kernels/threads, synchronize, backpressure

• Only operators aware of device heterogeneity

7Encapsulate heterogeneous parallelism
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Concurrent Execution

• Horizontal & Vertical parallelism

• Instantiate pipelines multiple times

• Routing policies: load-balance, partition, locality

8Encapsulate homogeneous parallelism
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Data Transfers

• Handle memory transfers/prefetching

• Hide memory topology

• Overlap transfers with execution

9Hide memory heterogeneity
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Execution Granularity

• Processing: in-registers => tuple-at-a-time

• Memory transfers: packets => block-at-a-time

• Transition between execution granularities

• Create homogeneous (reg. policy) packets

10Transition between execution granularities
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Logical plan

Heterogeneity-aware plans
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Operator portability
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FROM T
WHERE b > 42
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HetExchange in a JITed engine

12Generate pipelines and instantiate
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HetExchange in a JITed engine
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Device providers

Inject target-specific info using the JIT infrastructure



non
partitioned

Device-optimized operators
• Same challenges
• Similar algorithms
• Different mappings

15Reuse algorithms, specialize mappings to hardware

⨝ σΓ

⨝ sort-merge⨝ ⨝⨝ radix-

Boncz et al.
[VLDB1999]

Sioulas et al. 
[ICDE2019]

Fanout: L1 & TLB size Scratchpad size

ScratchpadL1Placement during probe:
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Ξ



non
partitioned

Hardware-dependent JIT code

16Lower generic description to device-specific code
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Experimental Setup
• 2x Intel Xeon E5-2650L v3 12-core @ 1.80GHz, 256GB RAM

• 2x NVIDIA GeForce GTX1080, 8GB, PCIe3 x16 per GPU

• DBMS C/G: state-of-the-art commercial DBMS
– DBMS C: CPU-based, vector-at-a-time, SIMD, based on MonetDB/X100

– DBMS G: GPU-based, JIT engine
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Performance on CPU-resident data

18Hybrid throughput = 88.5% (CPU-only + GPU-only), on average
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A glimpse into the future
• Effect of interconnects and GPU compute power
• Access to high-throughput network
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Adapting access method to query

Up to 45% speed-up by tuning access method to hardware

[CIDR2020]
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Towards placing the CPU on the side

• Shared & limited PCIe buses to NIC/GPU

• Similar intra/inter-server BW

• Direct NIC-GPU access (RDMA)

21Avoid CPU bottleneck => Device-centric OLAP engines
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JIT unleashes ALP

• Run on all available devices

• Relational operators oblivious to heterogeneity

• Fast: Inject target-specific information through codegen

• Result: 5x-10x versus CPU-/GPU-specialized systems
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Thank you!


