
Rockset’s Aggregator-Leaf-Tailer
Architecture for SQL on semi
structured data
High Performance Transaction Systems HPTS 2019

1

About Me
● CTO and Co-Founder of Rockset

● RocksDB @ Facebook

● Hadoop File System @ Yahoo

● HBase & Hive

2

Overview of the Talk

I. Changing Landscape of Data Analytics

II. Overview of Rockset’s Aggregator Leaf Tailer (ALT) Architecture

III. Smart Schemas for SQL

IV. Converged Indexing powers SQL

V. Cloud Scaling Architecture

3

Where has data processing been?

4

2006-2012
Batch Processing

Optimized for efficiency

2012-2018
Real-time Processing

Optimized for data latency

2018-
Operational Analytics

Optimized for: data latency,
query latency & QPS

1. Where is data analytics going? Live decisions on data

● Complex queries

○ no more key-values please

● Low latency queries

○ milli-sec and seconds

● High QPS queries

○ thousands of queries per second

● Low data latency

○ less than a few seconds

○ mixed types

5

Analytics on
the fly

Operational Analytics

Serverless search and analytics service (SaaS)  

for building real-time apps and dashboards  

without ETL or pipelines.

What is Rockset

6

The Aggregator Leaf Tailer (ALT) Architecture

7
https://rockset.com/blog/aggregator-leaf-tailer-an-architecture-for-live-analytics-on-event-streams/

https://rockset.com/blog/aggregator-leaf-tailer-an-architecture-for-live-analytics-on-event-streams/

Key Benefits of ALT

1. Makes queries fast: Indexing all data at time of ingest

2. Runs complex queries on the fly: Distributed aggregator tier that

scales compute and memory resources independently
3. It’s cost-effective: Tailer, Leaf, and Aggregator can be

independently scaled up and down
4. Optimizes read & writes in isolation: CQRS ensures that database

writes do not impact queries

8

Key Components of ALT
1. Converged Indexing

2. Smart Schemas

3. Cloud Native Architecture

9

Converged Indexing

10

What and Why converged indexing?

What? Rockset stores every column of every document in a row-based
index, column-based index, AND an inverted index.

Why?

● No need to configure and maintain indexes

● No slow queries because of missing indexes

11

INDEX ALL

How does converged indexing fit into ALT?

12

The leaf houses
Rockset’s converged
indexes- column, row,
AND inverted indexes

The optimizer can
pick the index for the
fastest query,
enhancing the
performance of
aggregators.

Under the Hood: Converged Indexing

● Columnar and inverted indexes in the same system

● Built on top of key-value store abstraction

● Each document maps to many key-value pairs

13

<doc 0>
{  
 “name”: “Igor”  
}

<doc 1>
{  
 “name”: “Dhruba”
}

Key Value

R.0.name Igor Row Store

R.1.name Dhruba

C.name.0 Igor Column Store

C.name.1 Dhruba

S.name.Dhruba.1 Inverted index

S.name.Igor.0

Inverted Indexing for point lookups

● For each value, store documents containing that value (posting list)
● Quickly retrieve a list of document IDs that match a predicate

“name”

“interests”

Dhruba 1

Igor 0

databases 0.0; 1.1

cars 1.0

snowboarding 0.1

“last_active”
2019/3/15 0

2019/3/22 1

<doc 0>
{  
 “name”: “Igor”,  
 “interests”: [“databases”, “snowboarding”], 
 “last_active”: 2019/3/15  
}

<doc 1>
{  
 “name”: “Dhruba”,  
 “interests”: [“cars”, “databases”], 
 “last_active”: 2019/3/22  
}

14

Columnar Indexing for aggregations

● Store each column separately
● Great compression
● Only fetch columns the query needs

<doc 0>
{  
 “name”: “Igor”,  
 “interests”: [“databases”, “snowboarding”], 
 “last_active”: 2019/3/15  
}

<doc 1>
{  
 “name”: “Dhruba”,  
 “interests”: [“cars”, “databases”], 
 “last_active”: 2019/3/22  
}

“name”

“interests”

0 Igor

1 Dhruba

0.0 databases

0.1 snowboarding

1.0 cars

1.1 databases

“last_active”
0 2019/3/15

1 2019/3/22

15

SELECT keyword, count(*)  
FROM search_logs  
GROUP BY keyword
ORDER BY count(*) DESC

● Low latency for both highly selective queries and large scans

● Optimizer picks between columnar store or inverted index

The Power of the Query Optimizer

16

Inverted index  
(for highly selective queries)

SELECT *
FROM search_logs  
WHERE keyword = ‘hpts’  
AND locale = ‘en’

Columnar store  
(for large scans)

Challenges with Converged Indexing

● Maintaining multiple indexes adversely impacts write throughput
● Challenge 1: one new record = multiple servers updates

○ Requires consensus coordination between servers
● Challenge 2: one new field = multiple random writes

○ Requires increased disk I/O

17

Challenge 1: one new record = multiple servers updates

● In a traditional database with term sharding and n indexes, one write
incurs updates to n different indexes on n servers

● Requires a distributed transaction (paxos, raft) between n servers

18

<doc 1>
{  
 “name”: “Dhruba”,  
 “interests”: [“cars”, “databases”],  
 “last_active”: 2019/3/22  
}

“interests”

Dhruba 1

Igor 0

databases 0.0; 1.1

cars 1.0

snowboarding 0.1

“last_active”
2019/3/15 0

2019/3/22 1

“name”

Addressing challenge 1: doc sharding

19

Distributed  
Log

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

new
docs

● Updates are durably-buffered
to a distributed log

Addressing challenge 1: doc sharding

● Updates are durably buffered
to a distributed log

● Leafs tail only documents in
the shards they are
responsible for

● Doc sharding means all new
keys will only affect a single
shard/leaf

20

Distributed  
Log

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB

Leaf

RocksDB

Leaf

RocksDB

new
key
s

What is document sharding?

21

Let’s say you were running a search on restaurant reviews in the area….

Traditional distributed databases
 Rockset

Optimized for query throughput Optimized for query latency

Big data analytics requires you to run complex queries at interactive speed

First, optimize for latency and then optimize for throughput

Restaurant Data Restaurant & Review DataReview Data

● Traditional systems use B-tree storage
structure

● Keys are sorted across tables
● A single record update would incur writes

to multiple different tables

Storage

Memory Manager

Challenge 2: one new doc = multiple random writes

22

Memory Buffer

Table 1 Table 2

Table 3 Table 4

new
docs

● RocksDB uses log-structured merge-tree
(LSM)

● Multiple record updates accumulate in
memory and written into a single SST file

● Keys are sorted between SST files via
compaction in a background process

● Multiple index updates from multiple docs
result in one write to storage

Storage

Memory Manager
Memory Buffer

SST 1 SST 2

SST 3 SST 4

new
docs

Addressing challenge 2: RocksDB LSM

23

background
compaction

Smart Schema SQL

24

What and Why smart schemas?

What? Automatic generation of a schema based on the exact fields and
types present at the time of ingest. There is no need to ingest the data
with a predefined schema (ie: schemaless ingestion).

Why? Avoid data pipelines that cause data latency

● Semi-structured data is complex and messy

● Ingest any semi-structured data (similar to NoSQL)

● Make it easy to read the data (using standard SQL)

25

Under the Hood: Smart Schemas

● Type information stored
with values, not “columns”

● Strongly types queries on
dynamically typed fields

● Designed for nested semi-
structured data

26

How do smart schemas fit into ALT?

27

Tailers ingest data without
predefined schemas (ie:
schemaless ingest)

Aggregators use the
schema to make queries
fast

schema binding at query
time

Challenges with Smart Schemas

● Challenge 1: Additional CPU usage for processing queries
● Challenge 2: Requires increased disk space to store types

28

We use field interning to reduce the space required to store schemas

29

Strict Schema

(Relational DB)

Schema Data Storage

City:
String

name:
String

age:
Int

Rancho Santa Margarita Jonathan 35

Rancho Santa Margarita Katherine 25

Schemaless

(JSON DB)

“City”: “Rancho Santa Margarita” “name”: “Jonathan” “age”:
35

“City”: “Rancho Santa Margarita” “Name”: “Katherine” “age”:
25

Rockset

(with field interning) 
~30% overhead

0: S “City” 1: S
“Jonathan”

2: S
“Katherine” 3: I 35 4: I 25 City: 0 name: 1 age: 3

City: 0 name: 2 age: 4

= Amount of storage

We use type hoisting to reduce CPU required to run queries

30

Strict schema 1 10 7 4 5

a b c d e

Schemaless

Rockset

(with type
hoisting)

Rows

I 1 I 10 I 7 I 4 I 5

S a S b S c S d S e

I 1 10 7 4 5

S a b c d e

Rockset query performance is almost on par with strict schema systems

Cloud Scaling
Architecture

31

● Cost of 1 cpu for 100 minutes == Cost of 100 cpu for 1 minute!!

Key insight into economics of cloud

32

● Cost of 1 cpu for 100 minutes == Cost of 100 cpu for 1 minute!!
○ Without cloud: statically provision for peak demand
○ With cloud: dynamically provision for current demand

Key insight into economics of cloud

33

● Cost of 1 cpu for 100 minutes == Cost of 100 cpu for 1 minute!!
○ Without cloud: statically provision for peak demand
○ With cloud: dynamically provision for current demand

● Goal: scale up and down storage as needed to achieve desired
performance

Key insight into economics of cloud

34

If your query is slow, the challenge is in the software you are using.

What and Why cloud autoscaling?

What? Each tailer, leaf, or aggregator can be independently scaled up
and down as needed. Tailers scale when more data to ingest, leaves
scale when data size grows and aggregators scale when query volume
increases

Why?

● No provisioning
● Pay for usage
● No need to provision for peak capacity

35

We are going to focus on scaling out the leaf

36

Scaling tailers and
aggregators are easy
because they are stateless

Scaling leaf nodes is tricky
because they are stateful

Quotation from Dr David Dewitt

David J. DeWitt
MIT

Willis Lang
Microsoft Jim Gray Systems Lab

37© Permission to use contents only with attribution to the authors

(The End of ”Shared-Nothing”)

2017

Scale down leaves: Use durability of cloud storage

38

Rockset SQL API

Aggregator Aggregator

 Object Storage (AWS S3, GCS, ...)

Leaf

RocksDB-Cloud

RocksDB

Leaf

RocksDB-Cloud

RocksDB

Leaf

RocksDB-Cloud

RocksDB

Tailer

SST filesSST files SST files

SST files are uploaded to
the cloud storage

Durability is achieved by
keeping data in cloud
storage

No data loss even if all
leaf servers crash and
burn!

Leaf

39

Leaf

RocksDB-Cloud

 Object Storage (AWS S3, GCS, ...)

Rockset SQL API

Aggregator Aggregator

Leaf

RocksDB-Cloud

Leaf

RocksDB-Cloud

Tailer

RocksDB RocksDB RocksDB

SST files SST files

Scale up new leaves: use zero-copy clones of rocksdb-cloud

SST files

RocksDB

RocksDB-Cloud

SST files

No performance
impact on
existing leaf
servers

Recap: ALT Architecture provides SQL on json

40

No need to manage indexes with converged indexing

No need to pre-define schemas with smart schemas

No need to provision servers with cloud scaling architecture

Summary: Operational Analytics

I. Index rather than partition-and-scan

II. Aggregator Leaf Tailer (ALT) Architecture rather than Lambda

architecture

III. Optimized for low data latency, low query latency, and high QPS

41

Transaction
Processing

Analytics
Processing

Operational
Analytics
Processing

https://rockset.com/blog/operational-analytics-what-every-software-engineer-should-know/

https://rockset.com/blog/operational-analytics-what-every-software-engineer-should-know/

Thank you

42

Dhruba Borthakur

dhruba@rockset.com

 @dhruba_rocks

Check us out: http://rockset.com

mailto:Dhruba@rockset.com
http://rockset.com
http://www.youtube.com/watch?v=KBb10Ttxjcc

