
DEBUGGING YOUR
DATABASE SYSTEM
USING APOLLO

J O Y A R U L R A J
G E O R G I A T E C H

APOLLO

• Holistic toolchain for debugging database systems
▫ Inspired by Jepsen

3

AUTOMATICALLY FIND SQL queries exhibiting
PERFORMANCE regressions

AUTOMATICALLY DIAGNOSE THE ROOT CAUSE OF
PERFORMANCE regressions

1

2

JOY ARULRAJ (arulraj@gatech.edu)

APOLLO (VLDB 2020)

JINHO JUNG TAESOO KIM

HONG HU WOONHAK KANG

4JOY ARULRAJ (arulraj@gatech.edu)

6.1

26.4

47.7

1.4 4.4
8.7

0

10

20

30

40

50

60

2000 2010 Present

7x
increaseCode

Size
(MB)

SQLITEPOSTGRESQL

Release Year

MOTIVATION: DBMS COMPLEXITY

5

Lower is
Better

JOY ARULRAJ (arulraj@gatech.edu)

MOTIVATION: PERFORMANCE REGRESSIONS

• Challenging to build systems with predictable performance
▫ Due to complex interactions between different components

• Scenario: User upgrades a DBMS installation
▫ Query suddenly takes ten times longer to execute
▫ Due to unexpected interactions between different components
▫ Refer to this behavior as a performance regression

• Performance regressions can hurt user productivity
▫ Can easily covert an interactive query to an overnight one

6JOY ARULRAJ (arulraj@gatech.edu)

SELECT R0.S_DIST_06
FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID < CAST(LEAST(0, 1) AS INT8))

>10,000x
slowdown

MOTIVATION: PERFORMANCE REGRESSIONS

7

LATEST VERSION
OF POSTGRESQL

• Due to a recent optimizer update
▫ New policy for choosing the scan algorithm
▫ Resulted in over-estimating the number of rows in the table
▫ Earlier version: Fast bitmap scan
▫ Latest version: Slow sequential scan

JOY ARULRAJ (arulraj@gatech.edu)

MOTIVATION: DETECTING REGRESSIONS

8

How to discover queries exhibiting regressions?

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

1

Query runs
slower on

latest version

JOY ARULRAJ (arulraj@gatech.edu)

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

MOTIVATION: REPORTING REGRESSIONS

9

2 How to simplify queries for reporting regressions?

Query runs
slower on

latest version

JOY ARULRAJ (arulraj@gatech.edu)

10

MOTIVATION: DIAGNOSING REGRESSIONS

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

3 How to DIAGNOSE THE ROOT CAUSE OF THE regression?

Query runs
slower on

latest version

JOY ARULRAJ (arulraj@gatech.edu)

APOLLO TOOLCHAIN

11

How to discover queries exhibiting regressions?1

SQLFUZZ: FEEDBACK-DRIVEN FUZZING

OLD
VERSION SQLFuzz SQLMin SQLDebug

APOLLO TOOLCHAIN

NEW
VERSION

BUG
REPORTS

- Query
- Commit
- File
- Function

JOY ARULRAJ (arulraj@gatech.edu)

APOLLO TOOLCHAIN

12

OLD
VERSION SQLFuzz SQLMin SQLDebug

APOLLO TOOLCHAIN

NEW
VERSION

BUG
REPORTS

- Query
- Commit
- File
- Function

2 How to simplify queries for reporting regressions?

SQLMIN: BI-DIRECTIONAL QUERY REDUCTION ALGORITHMS

JOY ARULRAJ (arulraj@gatech.edu)

APOLLO TOOLCHAIN

13

OLD
VERSION SQLFuzz SQLMin SQLDebug

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

3 How to DIAGNOSE THE ROOT CAUSE OF THE regression?

SQLDEBUG: STATISTICAL DEBUGGING + COMMIT BISECTION

JOY ARULRAJ (arulraj@gatech.edu)

TALK OVERVIEW

14

OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN

JOY ARULRAJ (arulraj@gatech.edu)

#1: SQLFUZZ — DETECTING REGRESSIONS

Old Version New Version

Query
Generator

Query
Executor

Reg.
Validator

SQLFUZZ

Random
Queries

Candidate
Queries Queries

Exhibiting
Performance
Regression

Update SQL Grammar
Probability Table

1 2 3

15JOY ARULRAJ (arulraj@gatech.edu)

Check
Complexity

#1: SQLFUZZ — DETECTING REGRESSIONS

Query
Generator

Retrieve
Schema

SQL Grammar
Probability Table

Valid
Queries

Queries
for

Fuzzing

CASE 0.3 LEFT JOIN 0.3

LIMIT 0.2 CAST 0.2

16

1 QUERY GENERATOR: RANDOM QUERY GENERATION

JOY ARULRAJ (arulraj@gatech.edu)

#1: SQLFUZZ — DETECTING REGRESSIONS

Query
Executor

Found
Regression?

SELECT R0.S_DIST_06
FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID <
CAST (LEAST(0, 1) AS INT8))

Update Table

CASE LEFT JOIN

LIMIT CAST +0.1

17

2 QUERY EXECUTOR: FEEDBACK-DRIVEN FUZZING

Old Version New Version

SQL Grammar Probability Table
JOY ARULRAJ (arulraj@gatech.edu)

#1: SQLFUZZ — DETECTING REGRESSIONS

1 Non-deterministic behavior

2 Non-executed QUERY plan?

3 usage OF catalog statistics?

4 enough memory?

5 LIMIT statement?

6 Query is too complex?

7 …

DBMS Developers

Update
Filtering Rules

Queries Exhibiting
Performance
Regression

Filtering Rules

Report

18

3 REGRESSION VALIDATOR: REDUCING FALSE POSITIVES

JOY ARULRAJ (arulraj@gatech.edu)

TALK OVERVIEW

19

OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN

JOY ARULRAJ (arulraj@gatech.edu)

#2: SQLMIN — REPORTING REGRESSIONS

• Top-Down Query Reduction
▫ Iteratively remove unnecessary query elements

•Bottom-Up Query Reduction
▫ Extract valid sub-queries

20JOY ARULRAJ (arulraj@gatech.edu)

#2: SQLMIN — REPORTING REGRESSIONS

JOY ARULRAJ (arulraj@gatech.edu)

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

21

JOY ARULRAJ (arulraj@gatech.edu)

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

#2: SQLMIN — REPORTING REGRESSIONS

Remove
dependencies

BOTTOM-UP
Reduction
EXTRACT SUB-QUERY

22

JOY ARULRAJ (arulraj@gatech.edu)

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

#2: SQLMIN — REPORTING REGRESSIONS

Top-Down
Reduction
Remove Elements

Remove conditions

Remove columns
Remove sub-queries

Remove clauses

23

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0,
FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL) AS S0)

AS S1;

#2: SQLMIN — REPORTING REGRESSIONS

24JOY ARULRAJ (arulraj@gatech.edu)

TALK OVERVIEW

25

OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Slow

Fast

DBMS

Commit
Bisection

SQLMin

Regression
Query

First Commit
Exhibiting Regression?

Statistical
Debugger

Control-Flow
Graphs
(Traces)

Partially
Reduced
Queries

26

SQLDEBUG
BUG

REPORT

- Query
- Commit
- File
- Function

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Commit 1

Commit 2

Commit 3

Commit 5 New VERSION (slow QUERY EXECUTION)

Old VERSION (fast QUERY EXECUTION)

Problem begins here!

27

1 COMMIT BISECTION: FIND EARLIEST PROBLEMATIC COMMIT

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Partially Reduced
Queries

Minimized
Query

Original
Query

SELECT NO FROM
ORDER AS R0 WHERE
EXISTS (SELECT CNT
FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM

SELECT CNT
FROM SALES
WHERE CNT > ID

28

2 QUERY REDUCTION: PARTIALLY REDUCED QUERIES

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

SELECT NO FROM
ORDER AS R0 WHERE
EXISTS (SELECT CNT
FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM

SELECT CNT
FROM SALES
WHERE CNT > ID

Collect set of queries
29

Partially Reduced
Queries

Minimized
Query

Original
Query

2 QUERY REDUCTION: PARTIALLY REDUCED QUERIES

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Functions

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

30

Old Version

New Version

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Functions

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

0x400
0x420 è true

0x500
0x520 è false

31

Old Version

New Version

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Traces

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Functions Traces

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

0x400
0x420 è true

0x500
0x520 è false

Trace Alignment

func + 0x0
func + 0x20 è true

func + 0x0
func + 0x20 è false

32

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Old Version

New Version

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Fast Query
Execution Traces

Slow Query
Execution Traces

Statistical
Debugging

Model

33

BRANCH TRACE

1 TAKEN

2 TAKEN

BRANCH TRACE

1 TAKEN

2 NOT TAKEN

4 STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Bug Report

RANK FILE FUNCTION LINE

1 foo.c bar() 2

… … … …

BRANCH TRACE

1 TAKEN

2 TAKEN

BRANCH TRACE

1 TAKEN

2 NOT TAKEN

34

Fast Query
Execution Traces

Slow Query
Execution Traces

4 STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

Statistical
Debugging

Model

JOY ARULRAJ (arulraj@gatech.edu)

RECAP

35

OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN

JOY ARULRAJ (arulraj@gatech.edu)

EVALUATION

• Tested database systems
▫ PostgreSQL, SQLite
•Binary instrumentation to get control flow graphs
▫ DynamoRIO instrumentation tool

•Evaluation
▫ Efficacy of SQLFuzz in detecting regressions?
▫ Efficacy of SQLMin in reducing queries?
▫ Accuracy of SQLDebug in diagnosing regressions?

36JOY ARULRAJ (arulraj@gatech.edu)

#1: SQLFUZZ — DETECTING REGRESSIONS

218
201

0

50

100

150

200

250

PostgreSQL SQLite

Mean
Performance

Drop
(Ratio)

37

Discovered 10 previously unknown,
unique performance regressions.

(7 acknowledged, 2 fixed)

200x
performance
drop

Lower is
Better

JOY ARULRAJ (arulraj@gatech.edu)

#1: SQLFUZZ — FALSE POSITIVES

99

0.0044
0.001

0.01

0.1

1

10

100

Discovered
Queries

SQLFuzz

False
Positive
Queries
(Percent)

38

Lower is
Better

Filtering rules remove
almost all false positives

JOY ARULRAJ (arulraj@gatech.edu)

#2: SQLMIN — REPORTING REGRESSIONS

1602

380
0

500

1000

1500

2000

Discovered Queries SQLMin

Query
Size

(Bytes)

39

77%
reduction

Lower is
Better

Significant reduction
in query size

Discovered
Queries

JOY ARULRAJ (arulraj@gatech.edu)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

5

2

3
Correctly Identified

Within Two Candidates

Within Three Candidates

10 regressions

40

FIRST ranked branch

Second ranked branch

Third ranked branch

Branch related to root cause
correctly identified in all cases

(within top-3 ranked branches)

JOY ARULRAJ (arulraj@gatech.edu)

SELECT COUNT (∗)
FROM (SELECT R0.ID
FROM CUSTOMER AS R0 LEFT JOIN STOCK AS R1
ON (R0.STREET = R1.DIST)
WHERE R1.DIST IS NOT NULL) AS S0

WHERE EXISTS (SELECT ID FROM CUSTOMER);

41

>1000x
slowdown

LATEST VERSION
OF SQLITE

• Due to a bug fix (for a correctness bug)
▫ Breaks query optimization
▫ Optimizer no longer transforms the LEFT JOIN operator

• Regression status: Not Yet Fixed
▫ Searching for a fix that resolves both correctness and performance issues

CASE STUDY #1: OPTIMIZER UPDATE

JOY ARULRAJ (arulraj@gatech.edu)

CASE STUDY #2: EXECUTION ENGINE UPDATE

SELECT R0.ID FROM ORDER AS R0
WHERE EXISTS (SELECT COUNT(∗)

FROM (SELECT DISTINCT R0.ENTRY
FROM CUSTOMER AS R1
WHERE (FALSE)) AS S1);

• Hashed aggregation executor update
▫ Resulted in redundantly building hash tables

• Regression status: Fixed
▫ If hash table already exists, then reuse the table

42

3x slowdown

LATEST VERSION
OF POSTGRESQL

JOY ARULRAJ (arulraj@gatech.edu)

CONCLUSION

•APOLLO (v1.0)
▫ Toolchain for detecting & diagnosing regressions
▫ Going to be open-sourced in 2020

•Adding support for other types of bugs (v2.0)
▫ Correctness bugs
▫ System crashes
▫ Database corruption

43JOY ARULRAJ (arulraj@gatech.edu)

CONCLUSION

• Interested in integrating APOLLO with more database systems
▫ Improve the toolchain based on developer feedback

•Automation will help reduce labor cost of developing DBMSs
▫ Developers get to focus on more important problems

44JOY ARULRAJ (arulraj@gatech.edu)

END
@joy_arulraj

45JOY ARULRAJ (arulraj@gatech.edu)

