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APOLLO

• Holistic toolchain for debugging database systems
▫ Inspired by Jepsen 
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AUTOMATICALLY FIND SQL queries exhibiting      
PERFORMANCE regressions

AUTOMATICALLY DIAGNOSE THE ROOT CAUSE OF 
PERFORMANCE regressions

1

2
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MOTIVATION: DBMS COMPLEXITY
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Lower is
Better
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MOTIVATION: PERFORMANCE REGRESSIONS

• Challenging to build systems with predictable performance
▫ Due to complex interactions between different components

• Scenario: User upgrades a DBMS installation 
▫ Query suddenly takes ten times longer to execute
▫ Due to unexpected interactions between different components
▫ Refer to this behavior as a performance regression

• Performance regressions can hurt user productivity
▫ Can easily covert an interactive query to an overnight one
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SELECT R0.S_DIST_06
FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID < CAST(LEAST(0, 1) AS INT8))

>10,000x 
slowdown 

MOTIVATION: PERFORMANCE REGRESSIONS
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LATEST VERSION 
OF POSTGRESQL

• Due to a recent optimizer update
▫ New policy for choosing the scan algorithm
▫ Resulted in over-estimating the number of rows in the table
▫ Earlier version: Fast bitmap scan
▫ Latest version: Slow sequential scan
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MOTIVATION: DETECTING REGRESSIONS
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How to discover queries exhibiting regressions?

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

1

Query runs
slower on

latest version
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SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

MOTIVATION: REPORTING REGRESSIONS
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2 How to simplify queries for reporting regressions?

Query runs
slower on

latest version
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MOTIVATION: DIAGNOSING REGRESSIONS

SELECT NO FROM ORDER AS R0
WHERE EXISTS (
SELECT CNT FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

SELECT NO FROM ORDER AS R0
WHERE EXISTS (

SELECT CNT FROM SALES AS R1
WHERE EXISTS (

SELECT ID FROM HISTORY AS R2
WHERE (R0.INFO IS NOT NULL));

3 How to DIAGNOSE THE ROOT CAUSE OF THE regression?

Query runs
slower on

latest version
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APOLLO TOOLCHAIN
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How to discover queries exhibiting regressions?1

SQLFUZZ: FEEDBACK-DRIVEN FUZZING 

OLD
VERSION SQLFuzz SQLMin SQLDebug

APOLLO TOOLCHAIN

NEW
VERSION

BUG
REPORTS

- Query
- Commit
- File
- Function
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APOLLO TOOLCHAIN
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OLD
VERSION SQLFuzz SQLMin SQLDebug

APOLLO TOOLCHAIN

NEW
VERSION

BUG
REPORTS

- Query
- Commit
- File
- Function

2 How to simplify queries for reporting regressions?

SQLMIN: BI-DIRECTIONAL QUERY REDUCTION ALGORITHMS
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APOLLO TOOLCHAIN
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OLD
VERSION SQLFuzz SQLMin SQLDebug

APOLLO TOOLCHAIN BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

3 How to DIAGNOSE THE ROOT CAUSE OF THE regression?

SQLDEBUG: STATISTICAL DEBUGGING + COMMIT BISECTION
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TALK OVERVIEW
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OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN
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#1: SQLFUZZ — DETECTING REGRESSIONS

Old Version New Version

Query
Generator

Query
Executor

Reg.
Validator

SQLFUZZ

Random
Queries

Candidate
Queries Queries

Exhibiting
Performance
Regression

Update SQL Grammar
Probability Table

1 2 3
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Check 
Complexity

#1: SQLFUZZ — DETECTING REGRESSIONS

Query
Generator

Retrieve
Schema

SQL Grammar
Probability Table

Valid
Queries

Queries
for 

Fuzzing

CASE 0.3 LEFT JOIN 0.3

LIMIT 0.2 CAST 0.2
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1 QUERY GENERATOR: RANDOM QUERY GENERATION
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#1: SQLFUZZ — DETECTING REGRESSIONS

Query
Executor

Found
Regression?

SELECT R0.S_DIST_06 
FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID < 
CAST (LEAST(0, 1) AS INT8))

Update Table

CASE LEFT JOIN

LIMIT CAST +0.1
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2 QUERY EXECUTOR: FEEDBACK-DRIVEN FUZZING

Old Version New Version

SQL Grammar Probability Table
JOY ARULRAJ (arulraj@gatech.edu)



#1: SQLFUZZ — DETECTING REGRESSIONS

1 Non-deterministic behavior

2 Non-executed QUERY plan?

3 usage OF catalog statistics?

4 enough memory?

5 LIMIT statement?

6 Query is too complex?

7 …

DBMS Developers

Update 
Filtering Rules

Queries Exhibiting
Performance
Regression

Filtering Rules

Report
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3 REGRESSION VALIDATOR: REDUCING FALSE POSITIVES

JOY ARULRAJ (arulraj@gatech.edu)



TALK OVERVIEW

19

OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN
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#2: SQLMIN — REPORTING REGRESSIONS

• Top-Down Query Reduction
▫ Iteratively remove unnecessary query elements

•Bottom-Up Query Reduction
▫ Extract valid sub-queries
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#2: SQLMIN — REPORTING REGRESSIONS

JOY ARULRAJ (arulraj@gatech.edu)

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;
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SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

#2: SQLMIN — REPORTING REGRESSIONS

Remove
dependencies

BOTTOM-UP
Reduction
EXTRACT SUB-QUERY
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SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10) AND (S0.C1 IS NULL))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
(SELECT ID FROM ITEM) AS C2

FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL

OR (R0.PRICE IS NOT S1.C2)
LIMIT 1000) AS S0) AS S1;

#2: SQLMIN — REPORTING REGRESSIONS

Top-Down 
Reduction
Remove Elements

Remove conditions

Remove columns
Remove sub-queries

Remove clauses
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SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (

SELECT S0.C0
FROM ORDER AS R1
WHERE ((S0.C0 = 10))

) THEN S0.C0 END AS C2,
FROM (

SELECT R0.I_PRICE AS C0, 
FROM ITEM AS R0
WHERE R0.PRICE IS NOT NULL) AS S0)

AS S1;

#2: SQLMIN — REPORTING REGRESSIONS
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TALK OVERVIEW
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OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Slow

Fast

DBMS

Commit
Bisection

SQLMin

Regression
Query

First Commit 
Exhibiting Regression?

Statistical
Debugger

Control-Flow 
Graphs
(Traces)

Partially 
Reduced
Queries
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SQLDEBUG
BUG

REPORT

- Query
- Commit
- File
- Function
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Commit 1

Commit 2

Commit 3

Commit 5 New VERSION (slow QUERY EXECUTION)

Old VERSION (fast QUERY EXECUTION)

Problem begins here!
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1 COMMIT BISECTION: FIND EARLIEST PROBLEMATIC COMMIT
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Partially Reduced 
Queries

Minimized
Query

Original
Query

SELECT NO FROM
ORDER AS R0 WHERE
EXISTS (SELECT CNT
FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM

SELECT CNT
FROM SALES
WHERE CNT > ID
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2 QUERY REDUCTION: PARTIALLY REDUCED QUERIES
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

SELECT NO FROM
ORDER AS R0 WHERE
EXISTS (SELECT CNT
FROM SALES AS R1
WHERE EXISTS (
SELECT ID FROM

SELECT CNT
FROM SALES
WHERE CNT > ID

Collect set of queries
29

Partially Reduced 
Queries

Minimized
Query

Original
Query

2 QUERY REDUCTION: PARTIALLY REDUCED QUERIES
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Functions

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}
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Old Version

New Version

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Functions

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

0x400
0x420 è true

0x500
0x520 è false
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Old Version

New Version

3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Traces
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Functions Traces

int func(){
if (cond1)

work;
}

int func(){
if (cond1)

work;
}

0x400
0x420 è true

0x500
0x520 è false

Trace Alignment

func + 0x0
func + 0x20 è true

func + 0x0
func + 0x20 è false
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3 CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Old Version

New Version
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Fast Query
Execution Traces

Slow Query
Execution Traces

Statistical
Debugging

Model
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BRANCH TRACE

1 TAKEN

2 TAKEN

BRANCH TRACE

1 TAKEN

2 NOT TAKEN

4 STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Bug Report

RANK FILE FUNCTION LINE

1 foo.c bar() 2

… … … …

BRANCH TRACE

1 TAKEN

2 TAKEN

BRANCH TRACE

1 TAKEN

2 NOT TAKEN
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Fast Query
Execution Traces

Slow Query
Execution Traces

4 STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

Statistical
Debugging

Model
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RECAP
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OLD
VERSION SQLFuzz SQLMin SQLDebug

BUG
REPORTS

- Query
- Commit
- File
- FunctionNEW

VERSION

APOLLO TOOLCHAIN
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EVALUATION

• Tested database systems
▫ PostgreSQL, SQLite 
•Binary instrumentation to get control flow graphs
▫ DynamoRIO instrumentation tool

•Evaluation
▫ Efficacy of SQLFuzz in detecting regressions?
▫ Efficacy of SQLMin in reducing queries?
▫ Accuracy of SQLDebug in diagnosing regressions?
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#1: SQLFUZZ — DETECTING REGRESSIONS
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Discovered 10 previously unknown,
unique performance regressions.  

(7 acknowledged, 2 fixed) 

200x 
performance
drop

Lower is
Better
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#1: SQLFUZZ — FALSE POSITIVES

99

0.0044
0.001

0.01

0.1

1

10

100

Discovered
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SQLFuzz

False 
Positive
Queries 
(Percent)
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Lower is
Better

Filtering rules remove 
almost all false positives
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#2: SQLMIN — REPORTING REGRESSIONS
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77%
reduction

Lower is
Better

Significant reduction 
in query size

Discovered
Queries
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#3: SQLDEBUG — DIAGNOSING REGRESSIONS

5

2

3
Correctly Identified

Within Two Candidates

Within Three Candidates

10 regressions
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FIRST ranked branch

Second ranked branch

Third ranked branch

Branch related to root cause 
correctly identified in all cases

(within top-3 ranked branches)
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SELECT COUNT (∗)
FROM (SELECT R0.ID
FROM CUSTOMER AS R0 LEFT JOIN STOCK AS R1
ON (R0.STREET = R1.DIST)
WHERE R1.DIST IS NOT NULL) AS S0

WHERE EXISTS (SELECT ID FROM CUSTOMER);
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>1000x 
slowdown 

LATEST VERSION 
OF SQLITE

• Due to a bug fix (for a correctness bug)
▫ Breaks query optimization
▫ Optimizer no longer transforms the LEFT JOIN operator

• Regression status: Not Yet Fixed
▫ Searching for a fix that resolves both correctness and performance issues

CASE STUDY #1: OPTIMIZER UPDATE

JOY ARULRAJ (arulraj@gatech.edu)



CASE STUDY #2: EXECUTION ENGINE UPDATE 

SELECT R0.ID FROM ORDER AS R0
WHERE EXISTS (SELECT COUNT(∗)

FROM (SELECT DISTINCT R0.ENTRY
FROM CUSTOMER AS R1
WHERE (FALSE)) AS S1);

• Hashed aggregation executor update
▫ Resulted in redundantly building hash tables

• Regression status: Fixed
▫ If hash table already exists, then reuse the table

42

3x slowdown 

LATEST VERSION 
OF POSTGRESQL
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CONCLUSION

•APOLLO (v1.0)
▫ Toolchain for detecting & diagnosing regressions
▫ Going to be open-sourced in 2020

•Adding support for other types of bugs (v2.0)
▫ Correctness bugs
▫ System crashes
▫ Database corruption
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CONCLUSION

• Interested in integrating APOLLO with more database systems
▫ Improve the toolchain based on developer feedback

•Automation will help reduce labor cost of developing DBMSs
▫ Developers get to focus on more important problems

44JOY ARULRAJ (arulraj@gatech.edu)



END
@joy_arulraj
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