Georgia &
Tech|)

DEBUGGING YOUR
DATABASE SYSTEM
USING APULLU

Jl]Y ARULRAJ
GEORGIA TECH

CREATING THE NEXT"

Vi

APOLLO

* Holistic toolchain for debugging database systems
s |nspired by Jepsen

€ AUTOMATICALLY FIND SQL QUERIES EXHIBITING
PERFORMANCE REGRESSIONS

€ AUTOMATICALLY DIAGNOSE THE ROOT CAUSE OF
PERFORMANCE REGRESSIONS

Georgia |
Tech|/

APOLLO (VLDB 2020)

Georgia
Tech

APOLLO: Automatic Detection and Diagnosis of
Performance Regressions in Database Systems

Jinho Jung Hong Hu Joy Arulraj
{jinho.jung, hhu86, arulraj, taesoo}@gatech.edu wokang@ebay.com
Georgia Institute of Technology eBay Inc.

ABSTRACT

The practical art of constructing database management systems
(DBMSs) involves a morass of trade-offs among query execution
speed, query optimization speed, standards compliance, feature
parity, modularity, portability, and other goals. It is no surprise that
DBMSs, like all complex software systems, contain bugs that can
adversely affect their performance. The performance of DBMSs is
an important metric as it determines how quickly an application can
take in new information and use it to make new decisions.

Both developers and users face challenges while dealing with
performance regression bugs. First, developers usually find it chal-
lenging to manually design test cases to uncover performance regres-
sions since DBMS components tend to have complex interactions.
Second, users encountering performance regressions are often un-
able to report them, as the regression-triggering queries could be
complex and database-dependent. Third, developers have to expend
alot of effort on localizing the root cause of the reported bugs, due
to the system ity and software

Given these challenges, this paper presents the design of APOLLO,
a toolchain for automatically detecting, reporting, and diagnosing

ions in DBMSs. We that APOLLO
automates the generation of regression-triggering queries, simpli-
fies the bug reporting process for users, and enables developers to
quickly pinpoint the root cause of performance regressions. By

Taesoo Kim Woonhak Kang

The theories of optimizing and processing SQL queries in rela-
tional DBMSs are well developed [42, 58]. However, the practical
art of constructing DBMSs involves a morass of trade-offs among
query execution speed, query optimization speed, standards compli-
ance, feature parity achievement, modularity, portability, and other
goals [4, 9]. Tt should be no surprise that these complex software
systems contain bugs that can adversely affect their performance.

Developing DBMSs that deliver predictable performance is non-
trivial because of complex interactions between different compo-
nents of the system. When a user upgrades a DBMS installation,
such interactions can unexpectedly slow down certain queries [8,
3]. We refer to these bugs that slow down the newer version of the
DBMS as performance regression bugs, or regressions for short. To
resolve regressions in the upgraded system, users should file regres-
sion reports to inform developers about the problem [2, 7]. However,
users from other domains, like data scientists, may be unfamiliar
with the requirements and process for reporting a regression. In
that case, their productivity may be limited. A critical regression
can reduce performance by orders of magnitude, in many cases
converting an interactive query to an overnight execution [56].

Regression Detection. To detect performance regression bugs,
developers have employed a variety of techniques in their software
development process, including unit tests and final system validation
tests [10, 5]. However, these tests are human-intensive and require a

automating the detection and diagnosis of
APOLLO reduces the labor cost of developing efficient DBMSs.

PVLDB Reference Format:

Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, Woonhak Kang. APOLLO:
Automatic Detection and Diagnosis of Performance Regressions in Database
Systems. PVLDB, 13(1): Xxxx-yyyy, 2019.

DOI: hutps://doi.org/10.14778/3357377.3357382

1. INTRODUCTION

Database management systems (DBMSs) are the critical com-
ponent of modern data-intensive applications [50, 19, 65]. The
performance of these systems is measured in terms of the time for
the system to respond to an application’s request. Improving this
metric is important, as it determines how quickly an application can
take in new information and use it to make new decisions.

This work is licensed under the Creative Commons Aribution-
NonC 1-NoDerivatives 4.0 License. To view a copy
of this license, visit i c-nd/4.0. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment

Proceedings of the VLDB Endowment, ol. 13, No. |

ISSN 2150-8097.

DOI: hutps://doi.org/10.14778/3357377.3357382

57

substantial inves of resources, and their coverage of the SQL
input domain is minimal. For example, existing test libraries com-
ose thousands of test scripts of SQL statements that cover both
individual features and common combinations of multiple features.
Unfortunately, studies show that composing each statement requires
about half an hour of a developer’s time [63]. Further, the coverage
of these libraries is minimal for two reasons: the number of possi-
ble combinations of statements and database states is exponential;
components of a DBMS tend to have complex interactions. These
make it ing to uncover with le\llng
Reportin, in
DBMSs are typically discovered while running complex SQL queries
on enormous databases, which make the bug analysis time-consuming
and challenging. Therefore, developers typically require users to
simplify large bug-causing queries before reporting the problem, in
a process known as fest-case reduction [2, 7]. However, simplifying
a query (o its essence is often an exercise in trial and error [12, 59,
63]. A user must repeatedly experiment by removing or simplifying
pieces of the query, running the reduced query, and backtracking
when a change no longer triggers the performance degradation [63].
It is common that regressions go unreported because of the mgh
difficulty of simplifying them. When confronted with a
a reasonable user might easily decide to find a workaround (e.g.,
change the query), instead of being sidetracked by reporting it.

WOONHAK KANG

MOTIVATION: DBMS COMPLEXITY
B POSTGRESQL I SQLITE

60
50 47.7 T 7X
Code Increase
Size 40
(MB) 30 26.4
. 20
Lower is ‘1 8.7
Better 10 . 4.4 ¢
, Hm_Z — L

2000 2010 Present

Release Year
Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

MOTIVATION: PERFORMANCE REGRESSIONS

* Challenging to build systems with predictable performance
= Due to complex interactions between different components

* Scenario: User upgrades a DBMS installation

s Query suddenly takes ten times longer to execute
s Due to unexpected interactions between different components
= Refer to this behavior as a performance regression

* Performance regressions can hurt user productivity
s Can easily covert an interactive query to an overnight one

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

MOTIVATION: PERFORMANCE REGRESSIONS

SELECT RO.S_DIST_06 >10,000x
FROM PUBLIC.STOCK AS RO slowdown

LATEST VERSION

WHERE (RO.S W _ID < CAST(LEAST(0, 1) AS INT8))

OF POSTGRESOL

* Due to a recent optimizer update
s New policy for choosing the scan algorithm
= Resulted in over-estimating the number of rows in the table
= Earlier version: Fast bitmap scan
= Latest version: Slow sequential scan

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

MOTIVATION: DETECTING REGRESSIONS

€@ HOW TO DISCOVER QUERIES EXHIBITING REGRESSIONS?

SELECT NO FROM ORDER AS RO
WHERE EXISTS (

— SELECT CNT FROM SALES AS R1

WHERE EXISTS (
Query runs SELECT ID FROM HISTORY AS R2

slower on WHERE (RO.INFO IS NOT NULL));

latest version

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

MOTIVATION: REPORTING REGRESSIONS

€ HOW T0 SIMPLIFY QUERIES FOR REPORTING REGRESSIONS?

SELECT NO FROM ORDER AS RO

WHERE EXISTS

— SELECT CNT FROM SALES AS R1

WHERE EXISTS (
Query runs SELECT ID FROM HISTORY AS R2
slower on WHERE (RO.INFO IS NOT NULL));

latest version

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

MOTIVATION: DIAGNOSING REGRESSIONS

€© HOW T0 DIAGNOSE THE ROOT CAUSE OF THE REGRESSION?

SELECT NO FROM ORDER AS RO
WHERE EXISTS (
SELECT CNT FROM SALES AS R1

WHERE EXISTS (
Query runs SELECT ID FROM HISTORY AS R2
slower on WHERE (RO.INFO IS NOT NULL));

latest version

Georgia
Te%h { JOY ARULRAJ (ARULRAJ@GATECH.EDU)

10

APOLLO TOOLCHAIN

€@ HOW TO DISCOVER QUERIES EXHIBITING REGRESSIONS?

SQLFUZZ: FEEDBACK-DRIVEN FUZZING

APOLLO TOOLCHAIN BUG
REPORTS
OLD =
VERSION SQLFUZZ SOLMIN SOLDEBUG o
~__ i '] 4 - @ - -FILE
e = ’ R - FUNCTION

Ge‘.}.'ggg | JOY ARULRAJ (ARULRAJ@GATECH.EDU) 11

APOLLO TOOLCHAIN

€ HOW T0 SIMPLIFY QUERIES FOR REPORTING REGRESSIONS?
SQLMIN: BI-DIRECTIONAL QUERY REDUCTION ALGORITHMS

APOLLO TOOLCHAIN BUG
REPORTS
OLD Ry
VERSION SOLFUZZ SOLMIN SOLDEBUG - COMMI
N T4 @ e d [T
NEW U o == ol - FUNCTION
VERSION ‘

Ge‘.}.'ggg | JOY ARULRAJ (ARULRAJ@GATECH.EDU) 12

APOLLO TOOLCHAIN

€© HOW T0 DIAGNOSE THE ROOT CAUSE OF THE REGRESSION?

SQLDEBUG: STATISTICAL DEBUGGING + COMMIT BISECTION
APOLLO TOOLCHAIN BUG

REPORTS
OLD

/]
VERSION SRz SIHN Sl]LI]EBUG - oo

-FILE
NEW U - ﬁ& - FUNCTION
VERSION ‘

Ge‘.}.'ggg | JOY ARULRAJ (ARULRAJ@GATECH.EDU) 13

J(((

TALK OVERVIEW

APOLLO TOOLCHAIN BUG

REPORTS
OLD " QUERY
VERSION SQLFUZZ SQLMIN SALDEBUG - COMMIT
[?27 »)l I{ » @ LI
NEW =2 - FUNCTION
VERSION

Georgia
Tegch] JOY ARULRAJ (ARULRAJ@GATECH.EDU) 14

#1: SQLFUZZ — DETECTING REGRESSIONS

~— ~—

-~

— I

SQLFUZZ Old Version New Version

Random Candidate ,
Queries

© Query Queries © Query Queries @) Reg. Exhibiting

C — | —)
Generator Executor Validator Performance

Regression

Update SQL Grammar
Probability Table

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU) 15

#1:SQLFUZZ — DETECTING REGRESSIONS
€© (QUERY GENERATOR: RANDOM QUERY GENERATION

Retrieve Check

)

3 Schema Quer CompIeX|ty k
‘ — y -

U Generator

Valid Queries
Queries for
Fuzzing

CASE 03 Iade o3 | SQLGrammar
LIMIT O CAST 0.2 Probability Table

Get_i_egc ﬁ | JOY ARULRAJ (ARULRAJ@GATECH.EDU

16

#1: SQLFUZZ — DETECTING REGRESSIONS

€ (QUERY EXECUTOR: FEEDBACK-DRIVEN FUZZING

L
L

Old Version New Version

Found
Regression?

Query
Executor

Georgia
Tech||

SELECT RO.S_DIST_06
FROM PUBLIC.STOCK AS RO
WHERE (R0.S_W_ID <

CAST|LEAST(0, 1) AS INT8))

Update Table

CASE LEFT JOIN

LIMIT

CAST +0.1

SQL Grammar Probability Table
JOY ARULRAJ (ARULRAJ@GATECH.EDU)

17

#1:SQLFUZZ — DETECTING REGRESSIONS
© REGRESSION VALIDATOR: REDUCING FALSE POSITIVES

Filtering Rules

NON-DETERMINISTIC BEHAVIOR
NON-EXECUTED QUERY PLAN? *)
A USAGE OF CATALOG STATISTICS? o 6 o
— ENOUGH MEMORY? _— e
ueries Exhibitin LIMIT STATEMENT? DBMS Developers
Q 9 \ p
Performance (QUERY IS TOO COMPLEX? :n
Regression o Update
<. ,+* Filtering Rules
Georgia |

Tech||

18

TALK OVERVIEW

APOLLO TOOLCHAIN BUG
REPORTS
OLD " QUERY
VERSION SQLFUZZ SOLMIN SQLDEBUG - COMMIT
& 14 @ ud BT
NEW =2 AR - FUNCTION
VERSION
Gegrgia JOY ARULRAJ (ARULRAJ@GATECH.EDU) 19

#2: SQLMIN — REPORTING REGRESSIONS

* Top-Down Query Reduction
s [teratively remove unnecessary query elements

* Bottom-Up Query Reduction
s Extract valid sub-queries

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

20

#2: SQLMIN — REPORTING REGRESSIONS

SELECT S1.C2
FROM (
SELECT
CASE WHEN EXISTS (
SELECT S0.CO
FROM ORDER AS R1
WHERE ((S0.CO = 10) AND (S0.C1 IS NULL))
) THEN SO.CO END AS C2,

FROM (
SELECT RO.|_PRICE AS CO, RO.|_DATA AS C1,
(SELECT ID FROM ITEM) AS C2
FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL
OR (RO.PRICE IS NOT S1.C2)
LIMIT 1000) AS SO) AS S1;

21

#2: SQLMIN — REPORTING REGRESSIONS

SELECT S1.C2
FROM (

(SELECT
CASE WHEN EXISTS (
SELECT S0.CO
FROM ORDER AS R1
WHERE ((S0.CO = 10) AND (S0.C1 IS NULL))
) THEN S0.CO END AS C2,
FROM (
SELECT RO.l_PRICE AS CO, RO.|_DATA AS C1,
(SELECT ID FROM ITEM) AS C2
FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL

| LIMIT 1000) AS SO) AS S1;

BOTTOM-UP

REDUCTION
EXTRACT SUB-QUERY

L 4
L 4
4
L 4

Remove
dependencies

22

#2: SQLMIN — REPORTING REGRESSIONS

(SELECT
CASE WHEN EXISTS (
SELECT S0.CO

FROM ORDER AS R1

iR (0.0 - 10) N

) THEN SO.CO END AS C2,

FROM (
SELECT RO.|_PRICE AS CO,

FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL

.) AS S0) AS S1;

TOP-DOWN

REDUCTION
REMOVE ELEMENTS

Remove conditions

Remove columns
Remove sub-queries

Remove clauses

23

#2: SQLMIN — REPORTING REGRESSIONS

(SELECT
CASE WHEN EXISTS (
SELECT S0.CO
FROM ORDER AS R1
WHERE ((S0.CO = 10))
) THEN SO.CO END AS C2,
FROM (
SELECT RO.I_PRICE AS CO,
FROM ITEM AS RO
WHERE RO.PRICE IS NOT NULL) AS SO)
AS S1;
_

Georgia
Tegch { JOY ARULRAJ (ARULRAJ@GATECH.EDU)

TALK OVERVIEW

APOLLO TOOLCHAIN BUG
REPORTS

OLD ” QUERY
VERSION SALFUZZ SAQLMIN SQLDEBUG - COMMIT
& L R VIV @ -FILE
NEW =2 AR - FUNCTION
VERSION

Georgia
Tegch] JOY ARULRAJ (ARULRAJ@GATECH.EDU) 25

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Partially Control-Flow
SQLDEBUG Reduced Graphs
Queries DBMS (Traces)
YRR EEEEY
- i | = A= = : Statistical
- SQLMin » i % i. g - .i DR i . Debugger
Regression N 4| - — /
Query Commit __,’
Bisection ===—=7" -

First Commit
Exhibiting Regression?

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

BUG
REPORT

- QUERY
- COMMIT

- FILE
- FUNCTION

26

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
€@ COMMIT BISECTION: FIND EARLIEST PROBLEMATIC COMMIT

(}[]MM|‘|' 1 OLD VERSION (FAST QUERY EXECUTION)
GUMM'TZ PROBLEM BEGINS HERE!

COMMIT 3

CUMMlT b NEW VERSION (SLOW QUERY EXECUTION)

e‘.i.'é ‘;ﬁ JOY ARULRAJ (ARULRAJ@GATECH.EDU)

27

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
€ (QUERY REDUCTION: PARTIALLY REDUCED QUERIES

ORIGINAL i PARTIALLY REDUCED MINIMIZED
QUERY ! QUERIES QUERY
I
i
i
SELECT NO FROM 1

EXISTS (SELECT CNT
FROM SALES AS R1

FROM SALES
WHERE CNT > ID

gg
525
247
293
g”

= °8

z 3

B

WHERE EXISTS (
SELECT ID FROM

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
€ (QUERY REDUCTION: PARTIALLY REDUCED QUERIES

ORIGINAL i PARTIALLY REDUGED MINIMIZED
QUERY ! QUERIES QUERY
i =
: E
SELECT NO FROM ' l —

EXISTS (SELECT CNT
FROM SALES AS R1

FROM SALES
WHERE CNT > ID

WHERE EXISTS (
SELECT ID FROM

SSSSSSS
SELE ROM

o COLLECT SET OF QUERIES
Gegraia JOY ARULRAJ (ARULRAJ@GATECH.EDU)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
© CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Functions

int func(){

= if (cond1)

work;
Old Version]

(L

S— int func(){
E m) | if (condl)

work;

New Version)

Georgia | JOY ARULRAJ (ARULRAJ@GATECH EDU)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
© CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Functions
int func(){ sod boooooal c
UII |f (Cond‘]) A R .
= work;
Old Version]
.| int func(){ feeeees .
Ul | if (condl) e :
. work;
New Version }
Geqedh JOY ARULRAJ (ARULRAJ@GATECH.EDU)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
© CONTROL-FLOW GRAPH COMPARISON: ALIGN TRACES

Functions Trace Alignment

— int func(){ : - func + 0x0
= Y if (cond1) === - - func + 0x20 =» true
[work:

Old Version]
- int func(){ === . - func + 0x0
sy) | if (cond1) e - - func + 0x20 => false
- work:

New Version) '

Geg.gjg _@ JOY ARULRAJ (ARULRAJ@GATECH.EDU)

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
© STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

A
BRANCH | TRACE
Fast Query mmmp 1 TAKEN \

Execution Traces 2 TAKEN

k IIII
BRANCH | TRACE Statistical

Slow Query M) TAKEN jDebugging
Execution Traces - NOT TAKEN Model

Georgia
Te%h { JOY ARULRAJ (ARULRAJ@GATECH.EDU)

33

#3: SQLDEBUG — DIAGNOSING REGRESSIONS
© STATISTICAL DEBUGGING: FAST AND SLOW QUERY TRACES

A
BRANCH | TRACE
FastQuery b 1 TAKEN \

Execution Traces 2 TAKEN

RANK | FILE | FUNCTION | LINE

m I I I » foo.c bar() 2

A

Slow Query) 1 TAKEN jDebugglng Bug Report
Execution Traces 2 NOT TAKEN Model

Gegrgia JOY ARULRAJ (ARULRAJ@GATECH EDU) 34

RECAP

APOLLO TOOLCHAIN BUG
REPORTS
OLD ~ QUERY
VERSION SQLFUZZ SOLMIN SQLDEBUG - COMMIT
[._@i:q - » N l(- » @ BT
NEW =2 - FUNCTION
VERSION
Gegrgia JOY ARULRAJ (ARULRAJ@GATECH.EDU) 35

EVALUATION

* Tested database systems
= PostgreSQL, SQLite

* Binary instrumentation to get control flow graphs
s DynamoRIO instrumentation tool

* Evaluation
s Efficacy of SQLFuzz in detecting regressions?
s Efficacy of SQLMin in reducing queries?
s Accuracy of SQLDebug in diagnosing regressions?

Georgia
Te%h] JOY ARULRAJ (ARULRAJ@GATECH.EDU)

36

#1: SQLFUZZ — DETECTING REGRESSIONS

Discovered 10 previously unknown,

unique performance regressions.
(7 acknowledged, 2 fixed)

250
Mean performance
Performance 150 drop
Drop 100
(Ratio)
Lower is >0
Better 0

PostgreSQL SQLite

Georgia
Te%h] JOY ARULRAJ (ARULRAJ@GATECH.EDU) 37

#1:SQLFUZZ — FALSE POSITIVES

Georgia
Tech||

False
Positive

Queries
(Percent)

Lower is
Better

100

10

|

0.1

0.01

0.001

Filtering rules remove
almost all false positives

|

Discovered SQLFuzz
Queries

JOY ARULRAJ (ARULRAJ@GATECH.EDU)

38

#2: SQLMIN — REPORTING REGRESSIONS

2000
1500 Significant reduction
Query in query size
Size 409
(Bytes) l 77%
reduction
Loweris 290
K
0
Dlscov?red SQLMin
Queries
Geqiln JOY ARULRAJ (ARULRAJ@GATECH EOU)

39

#3: SQLDEBUG — DIAGNOSING REGRESSIONS

Branch related to root cause
correctly identified in all cases
(within top-3 ranked branches)

Il FIRST RANKED BRANCH
BB SECOND RANKED BRANCH
B THIRD RANKED BRANCH
10 regressions
Gegrgia JOY ARULRAJ (ARULRAJ@GATECH.EDU) 40

CASE STUDY #1: OPTIMIZER UPDATE

SELECT COUNT (*)
FROM (SELECT RO.ID >1000x
FROM CUSTOMER AS RO LEFT JOIN STOCK AS R1 slowdown

LATEST VERSION

ON (RO.STREET = R1.DIST)
WHERE R1.DIST(IS NOT NULL) AS SO
WHERE EXISTS (SELECT ID FROM CUSTOMER);

OF SQLITE

* Due to a bug fix (for a correctness bug)
s Breaks query optimization
= Optimizer no longer transforms the LEFT JOIN operator

* Regression status: Not Yet Fixed

s Searching for a fix that resolves both correctness and performance issues

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU) 41

CASE STUDY #2: EXECUTION ENGINE UPDATE

SELECT RO.ID FROM ORDER AS RO 3x slowdown
WHERE EXISTS (SELECT COUNT(*)

FROM (SELECT DISTINCT RO.ENTRY
FROM CUSTOMER AS R1
WHERE (FALSE)) AS S1);

LATEST VERSION

OF POSTGRESQL

* Hashed aggregation executor update
s Resulted in redundantly building hash tables

* Regression status: Fixed
s |f hash table already exists, then reuse the table

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU)

42

CONCLUSION

* APOLLO (v1.0)

s Toolchain for detecting & diagnosing regressions
= Going to be open-sourced in 2020

* Adding support for other types of bugs (v2.0)
= Correctness bugs
s System crashes
= Database corruption

Georgia
Te%h] JOY ARULRAJ (ARULRAJ@GATECH.EDU)

43

CONCLUSION

* Interested in integrating APOLLO with more database systems
s Improve the toolchain based on developer feedback

» Automation will help reduce labor cost of developing DBMSs
= Developers get to focus on more important problems

Geg.ggg JOY ARULRAJ (ARULRAJ@GATECH.EDU) 44

alll

@joy_arulraj

