
Aurora Multi-Master

Justin Levandoski

Agenda

>

>

Aurora Fundamentals

Aurora Multi-Master Use Cases

> Aurora Multi-Master Architecture

Aurora Fundamentals

Amazon Aurora :
A r e l a t i o n a l d a t a b a s e r e i m a g i n e d f o r t h e c l o u d

R Speed and availability of high-end commercial databases

R Simplicity and cost-effectiveness of open source databases

R Drop-in compatibility with MySQL and PostgreSQL

R Simple pay as you go pricing

Delivered as a managed service

Why Aurora

SQL

TRANSACTIONS

CACHING

LOGGING

Relational databases were not design for the cloud
Monolithic architecture
Large failure blast radius

Databases in the cloud
Compute & storage have different lifetimes
Instances fail/shutdown/scale up & down
Instances added to a cluster

Compute & storage are best decoupled for
scalability, availability, and durability

Attached Storage

Aurora Arch i tec tu re

• Database tier
• Writes redo log to network
• No checkpointing! The log is the database
• Pushes log application to storage
• Master replicates to read replicas for cache updates

• Storage tier
• Highly parallel scale-out redo processing
• Data replicated 6 ways across 3 AZs
• Generate/materialize database pages on demand
• Instant database redo recovery

• 4/6 Write Quorum with Local Tracking
• AZ + 1 failure tolerance
• Read quorum needed only during recovery

DISTRIBUTED STORAGE NODES WITH SSDS

Master Replica Replica Replica

Master

Shared storage volume

Read Replica Read Replica

SQL

Transactions

Caching

SQL

Transactions

Caching

SQL

Transactions

Caching

AZ1 AZ2 AZ3

Aurora S torage Node

LOG RECORDS

Primary
Instance

INCOMING QUEUE

STORAGE NODE

S3 BACKUP

1

2

3

4

5

6

7

8

UPDATE
QUEUE

ACK

HOT
LOG

DATA
BLOCKS

POINT IN TIME
SNAPSHOT

GC

SCRUB
COALESCE

SORT
GROUP

PEER TO PEER GOSSIPPeer
Storage
Nodes

All steps are asynchronous
Only steps 1 and 2 are in foreground latency path
Input queue is 46X less than MySQL (unamplified, per node)
Favor latency-sensitive operations
Use disk space to buffer against spikes in activity

OBSERVATIONS

IO FLOW

① Receive record and add to in-memory queue
② Persist record and ACK
③ Organize records and identify gaps in log
④ Gossip with peers to fill in holes
⑤ Coalesce log records into new data block versions
⑥ Periodically stage log and new block versions to S3
⑦ Periodically garbage collect old versions
⑧ Periodically validate CRC codes on blocks

SUMMARY

Manages 10GB page segments
10GB = right size for repair/fault tolerance
Use fault tolerance for heat management/machine patching

Crash Recovery

CRASH

Log records Gaps

Volume Complete
LSN (VCL)

AT CRASH

IMMEDIATELY AFTER CRASH RECOVERY

Consistency Point
LSN (CPL)

Consistency
Point LSN (CPL)

Storage establishes consistency points that
increase monotonically + continuously returned
to DB

Transactions commit once DB can prove all
changes have met quorum

Volume Complete LSN (VCL) is the highest point
where all records have met quorum

Consistency Point LSN (CPL) is the highest
commit record below VCL.

Everything past CPL is deleted at crash recovery

Removes the need for 2PC at each commit
spanning storage nodes.

No redo or undo processing is required before the
database is opened for processing

Aurora Multi-Master Architecture

SHARED DISK CLUSTER

GLOBAL
RESOURCE
MANAGER

SHARED STORAGE

M1 M2 M3

M1 M1 M1M2 M3 M2

SQL

Transactions

Caching

Logging

STORAGE

Dis t r ibuted Lock Manager

APPLICATION

SQL

Transactions

Caching

Logging

LOCKING PROTOCOL MESSAGES

Cons

Heavyweight cache coherency traffic on per-lock basis
Networking can get expensive
Negative scaling with hot blocks

Pros

All data available to all nodes
Easy to build applications
Similar cache coherency as in multi-processors

SHARED NOTHING

SQL

Transactions

Caching

Logging

STORAGE

Par t i t ioned w i th Consensus

APPLICATION

SQL

Transactions

Caching

Logging

Cons

Heavyweight commit and membership change protocols

Can result in hot partitions = expensive repartitioning

Cross partition operations expensive; better at small requests

Pros

Query broken up and sent to data nodes

Less coherence traffic – only for commits

Can scale to many nodes

STORAGE

DATA
RANGE #1

DATA
RANGE #2

DATA
RANGE #4

DATA
RANGE #3

DATA
RANGE #5

L

L L

L

L

Shared storage volume

Storage nodes with SSDs

SQL

Transactions

Caching

Availability Zone 1

SQL

Transac9ons

Caching

• Each instance can execute write
transaction with no coordination with
the others

• Instances share a distributed storage
volume

• Nodes fail and recover independently
• Optimistic Page-Based Conflict

Resolution

• No Pessimistic Locking

• No Global Commit Coordination

• Writer instances in two availability zones
provide continuous availability

• GA August 2019

Aurora Mu l t i -Maste r

Availability Zone 2

• Membership
• Heartbeat

• Replication
• Metadata

Cluster Services

Storage

Page 1
Page 1
Page 1

Page 1
Page 1

Page 2
Page 2
Page 2
Page 2

Page 2
Page 2

Page 1

Non-conflicting writes originating on
different masters on different tables

Blue Master Green MasterTime

Begin Trx (BT1) 1 Begin Trx (OT1)

2 Update (table1)

3 Commit (BT1)

OK OK

No Synchronization

Non-Conf l i c t ing Wr i tes

Update (table2)

Commit (OT1)

Storage

Page 1
Page 1
Page 1

Page 1
Page 1

Page 2
Page 2
Page 2
Page 2

Page 2
Page 2

Page 1

Conflicting writes originating on different
masters on the same table

Blue Master Green MasterTime

Begin Trx (BT1) 1 Begin Trx (OT1)

2 Update (row1, table1)

3 Commit (BT1)

OK RETRY

Optimistic Conflict
Resolution

`Conf l i c t ing Wr i te

Update (row1, table1)

Rollback (OT1)

Storage

Page 1
Page 1
Page 1

Page 1
Page 1

Page 2
Page 2
Page 2
Page 2

Page 2
Page 2

Page 1

Conflicting writes originating on different
masters on the same table

Blue Master Green MasterTime

Begin Trx (BT1) 1 Begin Trx (OT1)

2 Update (row1, table1)

3

OK RETRY

Logical Conflict Detection

Log i ca l Confl ic t

Update (row1, table1)
and rollback (OT1)

4 Commit (BT1)

Page 1

Mechan i cs F rom the Head Node

Partitioned LSN and transaction id space

Durability and resolution point at storage constantly
increasing (creating new page versions)

Incoming replication from other masters

Database engine must handle rejected write to storage
Transaction rollback
B-tree structure modifications
Etc…

Storage

up
da

te

re
je

ct

ac
ce

pt

Replication

Mul t i -Maste r Commit

Blue
Master

Green
Master

Commit Commit

co
m

m
it

co
m

m
it

co
m

m
it

co
m

m
it

co
m

m
it

co
m

m
it

Log Records

Mechan i cs F rom the Storage Node

Log records written by multiple masters

Quorum commit log records like before, fills
in log chain, etc

Detects conflicting writes from other nodes

Returns rejection to log write on conflict

LOG RECORDS

Master 1
INCOMING QUEUE /

CONFLICT DETECTION

STORAGE NODE

S3 BACKUP

1
2

3
5

6

7

8

UPDATE
QUEUE

ACCEPT/REJECT

HOT
LOG

DATA
BLOCKS

POINT IN TIME
SNAPSHOT

GC

SCRUB
COALESCE

SORT
GROUP

PEER TO PEER GOSSIPPeer
Storage
Nodes

Master 2

Master N

…

4

Recovery in Mu l t i -Maste r

CRASH

Log records Gaps

Volume Complete
LSN (VCL)

AT CRASH

IMMEDIATELY AFTER CRASH RECOVERY

Consistency Point
LSN (CPL)

Consistency
Point LSN (CPL)

Green Master
Crashes

Gaps

VCL

AT CRASH

VCL

CPL CPL

Green Master
Recovery Point

Gaps filled New LSNs
and Gaps

SINGLE MASTER MULTI MASTER

Instance Read-After-Write (INSTANCE_RAW): A transaction can
observe all transactions previously committed on this instances, and
transactions executed on other nodes, subject to replication lag.

Regional Read-After-Write (REGIONAL_RAW): A transaction can
observe all transactions previously committed on all instances in the
cluster.

Cons i s tency Mode l

Reg iona l Read-Af te r Wr i te

N3

N1 N2

Client

T2

T3 N1 wait for replication to catch up until T2 AND T3

Globally consistent
results

No waits on the write path

Adds latency ONLY to consistent
reads

Configurable per session

Shared distributed
storage volume

ReadT1

Opt imi s t i c Execut ion : M in i -T ransact ions (3)

Resolution point constantly advancing

Can pessimistically wait for multi-page mtr to
resolve (lack of concurrency/performance)

Aurora optimistically executes multi-page mtr
(greater in-memory concurrency)

Rolls back mtr (and all dependent operations)
retroactively on conflict

Adaptively switches to pessimistic resolution if
high percentage of conflict detected

Aurora Multi-Master Use Cases

Shared storage volume

Storage nodes with SSDs

AZ1 AZ2

Application

AZ3

R/W
R/O

R/OR/W

A lot of work can be done on
single Aurora writer

Writable replicas provide instant
failover

Cont inuous Ava i l ab i l i t y

Structure the workload to limit conflicts
between database instances.

Prefer partitioning writes per table (or
table partition) from a single database
instance.

Aurora MM allows customers to “soft
partition,” or re-partition on the fly

Continuous availability through failures
and planned maintenance

Shared storage volume

Storage nodes with SSDs

AZ1 AZ2

Application

AZ3

R/W
R/W

R/W
R/W

Mul t i -Wr i te r Conf igura t ion

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000
W

rit
es

/s
ec

on
d

Scaling/Node Failure in Aurora Multi Master

Total writes/sec

One Writer:
R4.4XL

Scale out to Two
Writers
R4.4XL + R4.4XL

Scale Up Instance1
R4.8XL + R4.4XL

Instance1 offline

Continuous availability

Questions

