
Safe and Sound

Adrian Cockcroft
@adrianco
AWS VP Cloud Architecture Strategy

Availability, Safety and Security have
similar characteristics

Hard to measure near misses

Hard to model complex dependencies

Catastrophic failure modes

Availability, Safety and Security have
similar mitigations

Layered defense in depth

Bulkheads to contain blast radius

Minimize dependencies/privilege

Availability, Safety and Security Break
Each Other

Security breaks availability

Availability breaks safety

Etc.

What should
your system do
when
something fails?

Stop?

Carry on with reduced
functionality?

Collapse horribly?

What should
your system do
when
something fails?

If a permissions
look up fails,
should you stop or
continue?

Permissive failure, what’s
the real cost
of continuing?

See Memories, Guesses, and
Apologies
by Pat Helland

If a permissions
look up fails,
should you stop or
continue?

How often do you
failover apps to it?

How often do you
failover the whole datacenter at
once?

Do you have
a backup
datacenter?

“Availability Theater”

A fairy tale…
Once upon a time, in theory, if everything
works perfectly, we have a plan to survive the
disasters we thought of in advance.How did that work
out?

Datacenter flooded in hurricane Sandy… Finance company, Jersey City

Didn’t update security certificate and it expired… Entertainment site

Forgot to renew domain name… SaaS vendor

Whoops! YOU, tomorrow

“You can’t legislate against failure,
focus on fast detection and

response.”
—Chris Pinkham

Datacenter to cloud migrations are under-way
for the most business

and safety critical workloads

AWS and our partners are developing patterns, solutions and
services for customers in all industries including travel, finance,

healthcare, manufacturing…

Resilience

Past Present Future

Disaster
recovery

Chaos
engineering

Continuous
Resilience

You can only be as strong as your
weakest link

Dedicated teams are needed to find weaknesses before they take you out!

Defense In Depth
Experienced staff

Robust applications

Dependable switching fabric

Redundant service foundation

“If we change the name from chaos
engineering to continuous resilience,

will you let us do it all the time in
production?”

Engineering a Safer World
Systems Thinking Applied to Safety

Nancy G. Leveson

STPA – Systems Theoretic Process Analysis

STAMP – Systems Theoretic Accident Model & Processes

http://psas.scripts.mit.edu for handbook and talks

Observability

Kalman, 1961 paper
On the general theory of control systems

A system is observable If the behavior of the
entire system can be determined by only
looking at its inputs and outputs

Physical and software control systems are based on
models, remember all models are wrong, but some
models are useful…

Observability

STPA Model
(System Theoretic
Process Analysis)

Observability

STPA Model
Understand Hazards that
could disrupt successful
application processing Customer

requests
Completed
actions

Financial Services App

Control Plane

Data Plane

Throughput

STPA Hazards
Human Control Action:

Not provided
Unsafe action

Safe but too early
Safe but too late
Wrong sequence
Stopped too soon
Applied too long

Conflicts
Coordination problems
Degradation over time

Customer
requests

Completed
actions

Financial Services App

Control Plane

Data Plane

Throughput

STPA Hazards
Sensor Metrics:
Missing updates

Zeroed
Overflowed
Corrupted

Out of order
Updates too rapid

Updates infrequent
Updates delayed

Coordination problems
Degradation over time

Customer
requests

Completed
actions

Financial Services App

Control Plane

Data Plane

Throughput

How do we usually calculate risk?

Severity * Probability = Risk

Assumes that we can determine severity and probability

Assumes we always detect the failure when it occurs

Basic model for financial and economic risk analysis

Failure Modes and Effects Analysis (FMEA)

Engineering oriented risk analysis

Severity * Probability * Detectability = Risk

Add observability to mitigate silent failures

Discuss and record component level failure modes

Prioritize mitigation work where it will do most good

FMEA for Web Services - Layered Responsibility
Product Managers and Developers – unique business logic

Software Platform Team – standard components and services

Infrastructure Platform Team – resources, regions and networks

Resilience Engineering – observability and incident management

FMEA Severity Mapped to Infrastructure
Effect SEVERITY of Effect Ranking

Hazardous without
warning

Earthquake or meteorite destroys datacenter building, no warning, people injured 10

Hazardous with warning Hurricane or tornado destroys datacenter building, several days warning, people
injured

9

Very High Datacenter flooded, compute and storage systems destroyed, building ok 8

High Fire in datacenter, suppression system saves building, partial permanent
compute and storage loss

7

Moderate Hardware failure, CPU, disk, or power supply needs replacement. Often occurs
after power or cooling failures.

6

Low Power cut, cooling failure or network partition. Compute and storage returns
when power, cooling and network are restored

5

Very Low System operable with significant degradation of performance 4

Minor System operable with some degradation of performance 3

Very Minor System operable with minimal interference 2

None No effect 1

FMEA Probability Per Service Request
Guess to start with, then measure in production

PROBABILITY of Failure Failure Prob Ranking
Very High: Failure is almost inevitable >1 in 2 10

1 in 3 9

High: Repeated failures 1 in 8 8

1 in 20 7

Moderate: Occasional failures 1 in 80 6

1 in 400 5

1 in 2,000 4

Low: Relatively few failures 1 in 15,000 3

1 in 150,000 2

Remote: Failure is unlikely <1 in 1,500,000 1

FMEA Detectability
Needs an observable monitoring alert to detect a failure

Detection Likelihood of DETECTION by Design Control Ranking
Absolute Uncertainty Design control cannot detect potential cause/mechanism and subsequent failure

mode
10

Very Remote Very remote chance the design control will detect potential
cause/mechanism and subsequent failure mode

9

Remote Remote chance the design control will detect potential cause/mechanism
and subsequent failure mode

8

Very Low Very low chance the design control will detect potential cause/mechanism
and subsequent failure mode

7

Low Low chance the design control will detect potential cause/mechanism and
subsequent failure mode

6

Moderate Moderate chance the design control will detect potential cause/mechanism
and subsequent failure mode

5

Moderately High Moderately High chance the design control will detect potential
cause/mechanism and subsequent failure mode

4

High High chance the design control will detect potential cause/mechanism and
subsequent failure mode

3

Very High Very high chance the design control will detect potential cause/mechanism
and subsequent failure mode

2

Almost Certain Design control will detect potential cause/mechanism and subsequent failure
mode

1

FMEA Example
Customer is trying to make a request to a service

what could go wrong?

Hi, I’m user123

Auth failure

Log: 25ms user123 Auth failure

FMEA Example
Authentication Failures

FMEA Example
Customer is trying to obtain an IP address for a service

what could go wrong?

Lookup service?
DNS

No response…

FMEA Example – see paper for more failure modes

STPA – Top down focus on control hazards

FMEA – Bottom up focus on prioritizing failure modes

STPA tends to have better failure coverage than FMEA

Both are useful

Good Resilience Practices

Rule of 3 – three ways for critical operations to succeed

Synchronous data replication over three zones in a region

DR failover from primary region to either of two secondary regions

Active-Active-Active workloads across three regions

Good Resilience Practices

Fail up - DR failover between regions

From smaller capacity region to larger capacity region

From distant region to closer (lower latency) region

Good Resilience Practices

Chaos first

Build your resilience environment before introducing apps to it

Automated continuous zone and region failover testing

Make it a “badge of honor” to have an app pass the chaos test

Good Resilience Practices

Continuous Resilience

Continuous Delivery needs Test Driven Development and Canaries

Continuous Resilience needs automation in both test and production

Make failure mitigation into a well tested code path and process

Call it Chaos Engineering if you like, it’s the same thing…

Cloud provides the automation
that leads to chaos engineering

As datacenters migrate to cloud, fragile and
manual disaster recovery processes can be

standardized and automated

Testing failure mitigation will move from a
scary annual experience to automated

continuous resilience

Safe and Sound: Continuous Resilience

Paper: Building Mission Critical Financial Services Applications on AWS
By Pawan Agnihotri with contributions by Adrian Cockcroft

Adrian Cockcroft
@adrianco
AWS VP Cloud Architecture Strategy

https://d1.awsstatic.com/Financial%20Services/Resilient%20Applications%20on%20AWS%20for%20Financial%20Services.pdf

