
HPTS 2019
GONG SHOW

Emcee: Peter Alvaro

GONG SHOW

Test Infrastructure for Storage Systems
Engineering Quality in Apache Cassandra
Scott Andreas | HPTS Gong Show

- Distributed database: non-relational row store.

- Designed for multi-DC active-active topologies.

- 1000+ instances, multiple petabytes per cluster.

- Dynamo model, Paxos for partition linearizability.

- Used by Netflix, Facebook, Uber, CERN,

and over 1500 others.

About Apache Cassandra

🥳 🎂

🤕 🎂 🎂��

A Story About Quality

Classification Found By JIRA Ticket

Data Loss Preflight Testing CASSANDRA-15004: Anti-compaction briefly removes sstables from the read path
Data Loss Upgrade Tests CASSANDRA-14958: Counters fail to increment on 2.X to 3.X mixed version clusters
Data Resurrection Preflight Testing CASSANDRA-14936: Anticompaction should throw exceptions on errors, not just log them

Corruption / Data Loss OSS CASSANDRA-14672: After deleting data in 3.11.3, reads fail: "open marker and close marker have different deletion times"
Corruption Preflight Testing CASSANDRA-14912: LegacyLayout errors on collection tombstones from dropped columns

Corruption Fuzzing CASSANDRA-14843: Drop/add column name with different Kind can result in corruption

Corruption OSS Review CASSANDRA-14568: CorruptSSTableExceptions in 3.0.17.1 (CASSANDRA-14568 v2) Static collection deletions are corrupted in 3.0 <-> 2.{1,2} messages
Corruption Preflight Testing CASSANDRA-14749: Collection Deletions for Dropped Columns in 2.1/3.0 mixed-mode can delete rows

Corruption Preflight Testing CASSANDRA-14568: Static collection deletions are corrupted in 3.0 -> 2.{1,2} messages
Incorrect Resp / Data Loss Fuzzing CASSANDRA-14861: Inaccurate sstable min/max metadata can cause data loss
Incorrect Resp / Data Loss Diff Test CASSANDRA-14823: Legacy sstables with range tombstones spanning multiple index blocks create invalid bound sequences on 3.0+ (#1193)
Incorrect Response Fuzzing CASSANDRA-14873: Missing rows when reading 2.1 SSTables in 3.0

Incorrect Response Fuzzing CASSANDRA-14838: Dropped columns can cause reverse sstable iteration to return prematurely

Incorrect Response Diff Test CASSANDRA-14803: Rows that cross index block boundaries can cause incomplete reverse reads in some cases.

Incorrect Response Diff Test CASSANDRA-14766: DESC order reads can fail to return the last Unfiltered in the partition (#1170)

Stability Other CASSANDRA-14991: SSL Cert Hot Reloading should defensively check for sanity of the new keystore/truststore before loading it

Stability Preflight Testing CASSANDRA-14794: Avoid calling iter.next() in a loop when notifying indexers about range tombstones

Stability Preflight Testing CASSANDRA-14780: Avoid creating empty compaction tasks after truncate

Stability Preflight Testing CASSANDRA-14657: Handle failures in upgradesstables/cleanup/relocatee

Behavior Change / Incorrect Rep OSS CASSANDRA-14638: Column result order can change in 'SELECT *' results when upgrading from 2.1 to 3.0 causing response corruption for queries using prepared statements...

Availability Upgrade Tests CASSANDRA-14919: Regression in paging queries in mixed version clusters

Concurrency OSS (Datastax) CASSANDRA-14871: Datastax - Severe concurrency issues in STCS,DTCS,TWCS,TMD.Topology,TypeParser

Concurrency Preflight Testing CASSANDRA-14554: LifecycleTransaction encounters ConcurrentModificationException when used in multi-threaded context

Correctness OSS (Datastax) CASSANDRA-14869: Datastax - Fix full ring range subtraction

Performance Preflight Testing CASSANDRA-14935: PendingAntiCompaction should be more judicious in the compactions it cancels

Performance Fuzzing CASSANDRA-14894: RangeTombstoneList doesn't properly clean up mergeable or superseded rts in some cases

Safety Review CASSANDRA-14824: Expand range tombstone validation checks to multiple interim request stages

Safety Preflight Testing CASSANDRA-14763: Fail incremental repair prepare phase if it encounters sstables from un-finalized sessions

Test Failure Upgrade Tests CASSANDRA-14920: Some comparisons used for verifying paging queries in dtests only test the column names and not values

30+ Critical Bugs Found + Fixed
Data Loss, Corruption, Incorrect Response, More...

Time

Cultural Change

Sustained Investment in Quality

“Could Kyle

still break it?”
“Yes”|

- Model-based testing: formal specification of database, randomized

generators, and a verifier to validate correctness of responses.

- Soon: continuous execution across thousands of cores.

- Also: Executed concurrently with fault injection.

- Diff testing: comparison of billions of queries between V1 and V2.

- Replay Testing: Capture and execution of shadow traffic and comparison.

- Source Audits: Targeted review of soft spots, phased replacement.

Methodologies

Process

- Commitment to users: stable “dot-zero” for critical applications.

- Feature freeze on upcoming major release.

- Collective focus on quality.

- Published test and qualification plans.

- Establishment of quality metrics.

- “Find rate” by methodology, “pass rate” by test.

- Goal: Convergence across all methodologies.

Results

- A safe and stable release: Apache Cassandra 3.0.19.

- A path to Apache Cassandra 4.0 in 2020.

Goals

- An end to “waiting a year after major release to upgrade”

- Automated qualification infra + formal model (time + electricity = confidence)

- Faster cadence of safe, major releases toward evolving Cassandra to rival

proprietary systems such as DynamoDB and BigTable.

Engineering Quality in Apache Cassandra
Engineering Quality in Apache Cassandra
Scott Andreas | HPTS Gong Show

Thomas Zurek (SAP)
DWs + Data Lakes

⇒ Data Hubs

HPTS 2019 Gong Show

The Case for Latency-Aware Query
Optimization in a Global DBMS

Presented by Rebecca Taft

CockroachDB

• Geo-Distributed

• SQL

• Scalable

• Resilient

Locality-Aware SQL Optimization

• For OLTP, both latency and
bandwidth matter

• Cost model must account
for both

Proprietary & Confidential

Global Kitchen Supply: The case of the defective
vitamix blenders

"How many vitamix blenders in recent orders from LA were

supplied from the warehouse in Toulouse?"

Geo-Distributed TPC-C with 10 warehouses

US east
warehouses

w_id [0-2]

US west
warehouses

w_id [3-5]

EU west
warehouses

w_id [6-9]

Proprietary & Confidential

Model with TPC-C

"How many vitamix blenders in recent orders from LA

were supplied from the warehouse in Toulouse?"

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

How many?

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

How many?

Customers from LA

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

How many?

Customers from LA

Recent orders

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

How many?

Customers from LA

Recent orders
Vitamix blender

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

How many?

Customers from LA

Recent orders
Vitamix blender

Supplied by Toulouse

Proprietary & Confidential

Model with TPC-C

SELECT
 sum(ol_quantity)
FROM
 order_line
WHERE
 ol_w_id = 5
 AND ol_d_id = 1
 AND ol_o_id > 3000
 AND ol_i_id = 49712
 AND ol_supply_w_id = 9;

How many?

Customers from LA

Recent orders
Vitamix blender

Supplied by Toulouse

Plan chosen by CockroachDB v19.2

scalar-group-by
 ├── index-join order_line
 │ └── scan order_line@order_line_stock_fk_idx
 │ └── constraint: /6/5/3/2/1/4: [/9/49712/5/1/3001 - /9/49712/5/1]
 └── aggregations
 └── sum
 └── variable: ol_quantity

Time = 254 ms

Plan chosen by CockroachDB v19.2

scalar-group-by
 ├── index-join order_line
 │ └── scan order_line@order_line_stock_fk_idx
 │ └── constraint: /6/5/3/2/1/4: [/9/49712/5/1/3001 - /9/49712/5/1]
 └── aggregations
 └── sum
 └── variable: ol_quantity

order_line_stock_fk_idx
ol_supply_w_id=9

order_line
ol_w_id=5

RTT
~125ms

Time = 254 ms
Orders from LA

Supplied by Toulouse

Plan chosen by CockroachDB v20.1

scalar-group-by
 ├── select
 │ ├── scan order_line
 │ │ ├── constraint: /3/2/-1/4: [/5/1 - /5/1/3001]
 │ │ └── flags: force-index=primary
 │ └── filters
 │ ├── ol_i_id = 49712
 │ └── ol_supply_w_id = 9
 └── aggregations
 └── sum
 └── variable: ol_quantity

Time = 1.4 ms

Over
100x

faster!

1.
Geo-distributed SQL
optimizers must be
locality-aware

Summary

2.
For OLTP workloads,
must consider WAN
bandwidth and latency

3.
Help us build our
locality-aware optimizer.
We are hiring!

Thank you.
becca@cockroachlabs.com
CockroachLabs.com
github.com/cockroachdb/cockroach

Presented by Rebecca Taft

mailto:becca@cockroachlabs.com
https://www.cockroachlabs.com
https://www.github.com/cockroachdb/cockroach

Danica Porobic

Principal Member of Technical Staff

Oracle Database In-Memory

The Case for Converged Databases

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions.

The development, release, timing, and pricing of any features or functionality described for Oracle’s products may
change and remains at the sole discretion of Oracle Corporation.

Copyright © 2019 Oracle and/or its affiliates.

Historically, developers built large
monolithic applications using one

data store

Copyright © 2019 Oracle and/or its affiliates.

These applications and data stores
become difficult to maintain, and
unresponsive to change over time

Copyright © 2019 Oracle and/or its affiliates.

This lead to an alternative approach, one
that has a separate database per

microservice

Copyright © 2019 Oracle and/or its affiliates.

Each database is specialized for a
workload or data type: document,

key-value, analytic, relational, graph

Copyright © 2019 Oracle and/or its affiliates.

The goal was to create service
independence using best-of-breed

databases for each workload or data type

Copyright © 2019 Oracle and/or its affiliates.

But each single-purpose database that is
deployed fragments the overall data

architecture

Copyright © 2019 Oracle and/or its affiliates.

Single-purpose databases require apps to
use their proprietary APIs, language, and
transactions models instead of standards

like SQL

Copyright © 2019 Oracle and/or its affiliates.

Each single-purpose database has different
operational needs and limitations,

requiring unique management and skills

Copyright © 2019 Oracle and/or its affiliates.

Data propagation is inherently difficult
and causes unavoidable data delays and

data divergence

EVENT
RPC

ETL
REPLICATION

DB LINKS

EVENT
RPC

ETL
REPLICATION

DB LINKS

EVENT
RPC

ETL
REPLICATION

DB LINKS

EVENT
RPC

ETL
REPLICATION

DB LINKS

Copyright © 2019 Oracle and/or its affiliates.

Separate security policies must be
implemented in every database
and must be re-implemented
when app or policies change

Copyright © 2019 Oracle and/or its affiliates.

High availability and scalability
mechanisms and configuration are specific

to each single-purpose database

Copyright © 2019 Oracle and/or its affiliates.

Cloud providers offer different proprietary
cloud services that require apps to change

when you change cloud

Copyright © 2019 Oracle and/or its affiliates.

Integrating fragmented databases to
create a complete, available, secure, and
scalable solution is complex and custom

Copyright © 2019 Oracle and/or its affiliates.

Copyright © 2019 Oracle and/or its affiliates.

Container Database

Converge many databases, data models,
and apps into one container database

Copyright © 2019 Oracle and/or its affiliates.

Container DatabaseContainer DatabaseContainer Database

Or use multiple container databases

Copyright © 2019 Oracle and/or its affiliates.

Documents Graph,
SpatialRelational

Structured and Unstructured

ML, AI, R,
Big Data

OLTP Analytics Micro-Ser
vice
IoT,

Key-Valu
e

Traditional Next Generation

Microservices,
IoT,

Key-Value

Single Database Engine Supports all Workloads and Data

A Multi-Model Database Radically
Simplifies Data Management

Copyright © 2019 Oracle and/or its affiliates.

Thank you!

Copyright © 2019 Oracle and/or its affiliates.

Training for Speech
Recognition on Coprocessors
Sebastian Baunsgaard, Sebastian B. Wrede, Pınar Tözün

IT University of Copenhagen

reactions people who know me give when i
say i work on speech recognition

how did i get into this?
sebastians me

Could you supervise our MSc thesis?

What would you like to work on?

Automatic speech recognition

Why are you talking to me?

We want to make it scalable

ok then

needed to add some
hardware dimension,
though

but most student’s
attitude when i talk
about hardware is like ..

so i placed sebastians into ...

a month later, they built this

sys1$ sys2$

sys10$

training of acoustic model based on neural
networks on co-processors - time-to-accuracy

W
ER C
ER

conclusion
● very powerful co-processors more and more widely

available for machine learning

● but takes a lot to exploit, no free lunch as usual

● need to invest further in improving ML libraries for
accelerating model training on heterogeneous hardware

● on the other hand, low-budget platforms may be good
enough for your needs

Fault-tolerance is not a technical problem
Josh Leners, Two Sigma

Fault-tolerance is not a technical problem
Josh Leners, Two Sigma

This is not a financial talk:
This document is being distributed for informational and educational purposes only and is not an
offer to sell or the solicitation of an offer to buy any securities or other instruments. The information
contained herein is not intended to provide, and should not be relied upon for, investment advice.
The views expressed herein are not necessarily the views of Two Sigma Investments, LP or any of
its affiliates (collectively, “Two Sigma”). Such views reflect the assumptions of the author(s) of the
document and are subject to change without notice. The document may employ data derived from
third-party sources. No representation is made by Two Sigma as to the accuracy of such
information and the use of such information in no way implies an endorsement of the source of
such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may
be owned by entities other than Two Sigma. If so, such copyrights and/or trademarks are most
likely owned by the entity that created the material and are used purely for identification and
comment as fair use under international copyright and/or trademark laws. Use of such image,
copyright or trademark does not imply any association with such organization (or endorsement of
such organization) by Two Sigma, nor vice versa

Fault-tolerance is not a technical problem
is an epistemological problem

Techniques (e.g., consensus) expand our knowledge

Fault-tolerance is not a technical problem
is an epistemological problem

“When a single replica fails, we won’t lose
data and can still make progress.”

“We’ve survived a simulated partition”

“The cable cleaners unplugged a rack last
week and we were OK”

Techniques (e.g., consensus) can’t provide judgment

Fault-tolerance is not a technical problem
is an epistemological problem

“What’s this k parameter?”

“Should I Paxos all the things?”

“What’s the impact of failure?”

Byzantine fault tolerance won’t save you

Fault-tolerance is not a technical problem
is an epistemological problem

“Making Byzantine Fault Tolerant
Systems Tolerate Byzantine Faults”
Clement et al.

Also, can you really just give up once you
go over k failures?

Fault-tolerance is not a technical problem
is an epistemological problem

Opportunities:

1. Formalize propagation of impact

2. A global forum for sev0 incidents

3. Formal methods in the wild

Michael A. Sevilla, Ike Nassi
{michael.sevilla, ike.nassi}@tidalscale.com

HPTS’19

Lessons Learned Building a
Distributed Hypervisor

Traditional Virtualization Inverse Virtualization

Applications
Libraries

Applications
Libraries

Applications
Libraries

Applications

Libraries

 : Software-Defined Servers (SDS)

SDS

SDS

Michael Sevilla, Ike Nassi HPTS’19 {michael.sevilla, ike.nassi}@tidalscale.com

Challenges:

New Model for Distribution

FAILING

SPARE

QUARANTINE

1. Detect failure

2. Evict resources from server

3. Repair server and re-introduce

SPARE

> Nodes = >… Reliable

0 downtime (SLAs, upgrades, etc)

IO: granularity of compute

DB: NUMA compatibility

Challenges: New, Exciting Opportunities

Michael Sevilla, Ike Nassi HPTS’19 {michael.sevilla, ike.nassi}@tidalscale.com

77

Consensus
Consistency

vs

Sugu Sougoumarane

Co-creator Vitess, CTO @ PlanetScale

78

1

1

1

Client
A=2

P:A=2Ack

P:A=2

P:A=2

79

P:A=2

1

1

P:A=2

1

ClientA=?

F:A=2

2

F:A=2

2

F:A=2

2

80

Our
Options?

Quorum
Read

Read from
Leader

Wait till
update

81

Use
Consensus for

Durability Preventing
Divergence

High
Availability

Consistency

“Transactions” in a
Microservices World:
The Saga Continues …

Pranta Das
Founder & CEO

Das Coders

18th International Workshop on High Performance Transaction Systems
(HPTS)

November 3-6, 2019
http://hpts.ws

http://hpts.ws/

History of Sagas
• First proposed in a research paper titled “Sagas” by Hector

Garcia-Molina and Kenneth Salem, Dept. of Computer Science at
Princeton University, submitted on 7, January 1987. Also appeared in
SIGMOD '87 Proceedings of the 1987 ACM SIGMOD international
conference on Management of data (Pages 249-259) in San Francisco,
California, USA — May 27 - 29, 1987:

• https://dl.acm.org/citation.cfm?id=38742
• This advanced transaction model became popular in Enterprise

Application Integration (EAI) systems, which had Long-Lived
Transactions (LLTs), in the late 1990’s and early 2000’s.

• I had written a paper on a hybrid model called CHAT (CrossWorlds
Hybrid Asynchronous Transactions), that borrowed concepts from the
Saga model and the ConTract model, 16 years ago at HPTS 2003:

• https://drive.google.com/file/d/1Tm3oNmGiuf16tDhIBFTEUHDxt_GsO0FW/vi
ew

https://dl.acm.org/citation.cfm?id=38742
https://drive.google.com/file/d/1Tm3oNmGiuf16tDhIBFTEUHDxt_GsO0FW/view
https://drive.google.com/file/d/1Tm3oNmGiuf16tDhIBFTEUHDxt_GsO0FW/view

Why are Sagas making a comeback?
• As monolithic applications are getting split-up into microservices, each microservice is responsible for making its own independent data storage and

persistence decisions.

• For example, a standard 3 tier application in single monolithic process, such as the one, shown below, uses a single monolithic data store engine:

• Microservices do not share data storage or persistence stores. Each service could use a different brand of data storage engine.

• So standard in-process ACID across microservices will not work. And 2-PC does not scale – O(n2) messages in the worst case scenario.

Web Tier

Monolithic App Tier

Data TierHotel
Reservation

Service

Car Rental
Service

Flight
Booking
Service

Web Tier

Data Tier
(MySQL)

Hotel Reservation
Micro-Service

Car Rental
Micro-Service

Flight
Booking

Micro-Service

Data Tier
(MongoDB)

Data Tier
(Postgres)

App
Tier

Each Saga has a bunch of Sub-Transactions and associated
Compensations (Rollback recovery - Undo)

Backward Recovery (Requires Compensations to be Idempotent)
:Begin-Saga
 Sub-Transaction-1: Make-hotel-reservation
 If failed – go to :Abort-Saga (since Compensation Stack is Empty)
 Otherwise Push Make-hotel-reservation onto Compensation-Stack
 Sub-Transaction-2: Rent-a-car
 If failed – Pop Compensation Stack – Undo Make-hotel-reservation and go to :Abort-Saga
 Otherwise Push Rent-a-car onto Compensation-Stack
 Sub-Transaction-3: Book-a-flight
 If failed – Pop Compensation Stack twice – Undo Rent-a-car, Undo Make-hotel-reservation and go to :Abort-Saga
:End-Saga-Success
:Abort-Saga

Web Tier

Data Tier
(MySQL)

Hotel Reservation
Micro-Service

Car Rental
Micro-Service

Flight
Booking

Micro-Service

Data Tier
(MongoDB)

Data Tier
(Postgres)

App
Tier

Each Saga has a bunch of Sub-Transactions (Roll-Forward Recovery -
Redo)

Forward Recovery (Requires Sub-Transactions to be Idempotent)
:Begin-Saga
 Sub-Transaction-1: Make-hotel-reservation
 If failed – retry “indefinitely” with exponential-backoff until it succeeds.
 Sub-Transaction-2: Rent-a-car
 If failed – retry “indefinitely” with exponential-backoff until it succeeds.
 Sub-Transaction-3: Book-a-flight
 If failed – retry “indefinitely” with exponential-backoff until it succeeds.
:End-Saga-Success

Web Tier

Data Tier
(MySQL)

Hotel Reservation
Micro-Service

Car Rental
Micro-Service

Flight
Booking

Micro-Service

Data Tier
(MongoDB)

Data Tier
(Postgres)

App
Tier

Pattern-1: Centrally Coordinated Saga Execution - A specialized Saga
microservice coordinates the Saga and talks to all participant microservices

• Pros: Individual micro-services need not have to deal with Saga execution.

• Cons: Coordinator micro-service (albeit stateless) becomes a single point of failure

Web Tier

Data Tier
(MySQL)

Hotel Reservation
Micro-Service

Car Rental
Micro-Service

Flight
Booking

Micro-Service

Data Tier
(MongoDB)

Data Tier
(Postgres)

Saga Coordinating
Micro-Service

Distributed
Saga log

(Message Bus)

Saga
declaration

App Tier

Pattern-2: Distributed Saga Execution – Each microservice runs it’s part of
the Saga and communicates with its peers

• Pros: No need for a Coordinator and thus no single point of failure.

• Cons: Each micro-service has additional complexity since it needs to talk to other micro-services and write to the

distributed saga log.

Web Tier

Data Tier
(MySQL)

Hotel Reservation
Micro-Service

Car Rental
Micro-Service

Flight
Booking

Micro-Service

Data Tier
(MongoDB)

Data Tier
(Postgres)

Distributed
Saga log

(Message
Bus)

Saga
declaration

App
Tier

What if a compensation fails?

•If a compensation fails to execute, then the Saga
enters a Heuristic state.

•In such cases, sometimes the only way to fix the
Saga to bring it to a consistent state may be
through manual repair. This may be via a
phone-call or email to the system support staff to
fix the problem.

Other recent literature on this subject:
• Chris Richardson’s article on Microservices patterns:

https://microservices.io/patterns/data/saga.html
• Microsoft Azure Architecture Patterns:

https://docs.microsoft.com/en-us/azure/architecture/patterns/compen
sating-transaction

• Caitie McCaffrey’s talk at JonTheBeach @ JontheBeach (2017)

https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-f
or-coordinating-microservices

https://microservices.io/patterns/data/saga.html
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-for-coordinating-microservices
https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-for-coordinating-microservices
https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-for-coordinating-microservices

GQL Graph Query Language
A new ISO/IEC standard project

Alastair Green, Neo4j Query Languages Team
Vice-chair Linked Data Benchmark Council

HPTS 2019, 4 November

 CREATE GRAPH SocialNetwork (
 (Person {name STRING, dob DATE}),
 (City {name STRING}),

 (Person)-[LivesIn]->(City),
 (Person)=[Knows]=(Person)
)

LivesIn

Knows

CityPerson

CREATE VIEW Cities {
 FROM SocialNetwork
 MATCH (tail)-[edge]->(city::City)
 PROJECT GRAPH tail, edge, city
}

FROM Cities
MATCH ()-[connections]->()
PROJECT DISTINCT type(connections)

ISO/IEC GQL standard

September 2019

Ballot on new project proposal closes

10 countries for, 4 abstain, 1 against

7 countries volunteer experts including
U.S.A., China, U.K.

Graph Query Language GQL

First international standard Database
Languages project since SQL in 1987

The SQL and GQL
working group

Why GQL isn’t SQL reshuffled
Graph queries can examine structure, without knowing types or values

Don Chamberlin said that SQL pushed 100s of lines of CODASYL into a few lines

“Cypher: the best way to state a join”

FROM Cities
MATCH ()-[connections]->()
PROJECT DISTINCT type(connections)

FROM Cities
MATCH (p:Person)-[LivesIn]->(c:City WHERE c.name = “Berlin”),
 (p)=[Knows]=(friends:Person)
PROJECT p, friends

GQL is a graph language: not the graph language

GQL is a declarative query language that understands the property graph data
model.

The body of a graph procedure can be written in GQL ...

There can be other graph languages: procedural, traversal, network algos ...

A graph program is made up of language modules that share types and procedure
signatures

Learning from the weaknesses, actual and perceived, of SQL

Why SQL doesn’t suck

SQL SELECT is a function over a table, returning a table

Composition (closure over tables) enables Spark’s mixture of SQL clauses and
user code. A DataFrame is a table, and everything in Spark is a chain of functions
transforming tables to tables, using relational algebra and SQL syntactic units

Property graph languages started out as Graph ➜Table projections

But they need to grow up, and allow Graph ➜Graph projections

DB query language model

98

Value Value

Stored data

Stored data

Procedure (statement[s])

Value

Value

Read
Project

Mutate

SQL query language model

99

Table Table

Stored data

Stored data

Procedure (statement[s])

Table

Table

Read
Project

Mutate

Cypher query language model

100

Table Table

Stored data

Stored data

Procedure (statement[s])

Graph

Graph

Read
Project

Mutate

Pure graph query language (G-CORE) model

101

Graph Graph

Stored data

Stored data

Procedure (statement[s])

Graph

Graph

Read
Project

Mutate

GQL query language model

102

Value Value

Stored data

Stored data

Procedure (statement[s])

Graph

Graph

Read
Project

Mutate

Value
Scalar

Collect

Record Table

Graph

GQL will codify the state of the art in graph data
— Superset of industrial property graph data models
— Full CRUD for databases and read/project for analytics engines
— Multi-statement procedures
— Nested and cascading procedure composition
— Table projections and graph projection/query composition
— RPQs as well as fixed patterns, for existence and data
— “Closed” schema for graphs
— Graph catalog with named graphs and named queries (views)
— Transaction demarcation support and atomic transactions
— Client-service sessions
— Access control: NOT YET

103

GQL 1.0 SQL/PGQ 202x RDF/SPARQL 1.1

Node and edge properties ✅ ✅ ⁓ nodes only

Data Query: fixed pattern ✅ ✅ ✅

Existential Query: RPQ ✅ ✅ ✅

Data Query: RPQ ✅ ✅ ⁓ endpoints only

Table projection ✅ ✅ ✅

Graph projection ✅ ✅

Insert, update, delete ✅ ✅

Named graphs ✅ ✅ ✅

Read-only graph views ✅

Updatable views ⁓ simple only

Omnigraphs ✅

Catalog of graphs ✅ ✅

Graph schema ✅ ✅

Transaction demarcation ✅ ✅

Thank you!

