HPTS 2019

GONG SHOW

Test Infrastructure for Storage Systems

Engineering Quality in Apache Cassandra
Scott Andreas | HPTS Gong Show

About Apache Cassandra

Distributed database: non-relational row store.
Designed for multi-DC active-active topologies.

1000+ instances, multiple petabytes per cluster.

Dynamo model, Paxos for partition linearizability.

Used by Netflix, Facebook, Uber, CERN,

and over 1500 others.

Apache Cassandra

A Story About Quality

30+ Critical Bugs Found + Fixed

Data Loss, Corruption, Incorrect Response, More...

Time
Cultural Change

Sustained Investment in Quality

“Could Kyle

still break it?”

“YeS”

Methodologies

- Model-based testing: formal specification of database, randomized

generators, and a verifier to validate correctness of responses.

- Soon: continuous execution across thousands of cores.

- Also: Executed concurrently with fault injection.

- Diff testing: comparison of billions of queries between V1 and V2.
- Replay Testing: Capture and execution of shadow traffic and comparison.

- Source Audits: Targeted review of soft spots, phased replacement.

Process

Commitment to users: stable “dot-zero” for critical applications.

Feature freeze on upcoming major release.

- Collective focus on quality.

Published test and qualification plans.

Establishment of quality metrics.

- “Find rate” by methodology, “pass rate” by test.

- Goal: Convergence across all methodologies.

Results

- A safe and stable release: Apache Cassandra 3.0.19.

- A path to Apache Cassandra 4.0 in 2020.

Goals

- An end to “waiting a year after major release to upgrade”
- Automated qualification infra + formal model (time + electricity = confidence)
- Faster cadence of safe, major releases toward evolving Cassandra to rival

proprietary systems such as DynamoDB and BigTable.

Engineering Quality in Apache Cassandra

Engineering Quality in Apache Cassandra
Scott Andreas | HPTS Gong Show

Thomas Zurek (SAP)

Customer Risk Intelligence DWs + Data Lakes
The implementation: customer risk scored across all disparate data assets! Dieiiel Liluigs
Credit
Management / Safeguarded
sales process
i : @ puthon .
FX7s/4 HANA e pgthon PY ; SAS sm@
Pre-process Overall Risk Updated
Business BP Scoring B
Parner (@ Process
Address
CheCK Analytics Cloud
Risk \
Ny Analytics
o SAP Ariba /\ Overall view
solcri;i Eeed Sentiment Ariba Risk of BP risk
Analysis Score
DataHub

pipelines

© 2019 SAP SE or an SAP afifite comparry. All nights reserved. | PUBLIC

The Case for Latency-Aware Query
Optimization in a Global DBMS

HPTS 2019 Gong Show

Presented by Rebecca Taft Cockroach LABS

CockroachDB

« Geo-Distributed
« SQL
« Scalable

« Resilient

76- Cockroach LaBs

3

Locality-Aware SQL Optimization

« For OLTP, both latency and
bandwidth matter

 Cost model must account
for both

7§
76— Cockroach LaBs

Global Kitchen Supply: The case of the defective
vitamix blenders _—

'

"How many vitamix blenders in recent orders from LA were

supplied from the warehouse in Toulouse?"

76. Cockroach LaBs

Geo-Distributed TPC-C with 10 warehouses

US east L)
warehouses F
v lel o2 EU west
F warehouses
US west w_id [6-9]
warehouses e

w_id [3-5]
[2

7{ Cockroach LaBs

Model with TPC-C

"How many vitamix blenders in recent orders from LA

were supplied from the warehouse in Toulouse?"

WCockroach LABS Proprietary & Confidential

Model with TPC-C

SELECT

sum (ol quantity)
FROM

order line
WHERE

ol w id = 5

AND ol d id =1

AND ol o id > 3000
AND ol 1 id = 49712
AND ol supply w 1id

-6— Cockroach LaBs

9;

Model with TPC-C

SELECT

sum (ol _quantity) How many?
FROM

order line
WHERE

ol w id = 5

AND ol d id =1

AND ol o id > 3000

AND ol i id = 49712
AND ol supply w id = 9;

-6— Cockroach LaBs

Model with TPC-C

SELECT

sum (ol quantity) How many?
FROM

order line
WHERE

ol_w_id = 5 Customers from LA

AND ol d id =1

AND ol o id > 3000

AND ol i id = 49712
AND ol supply w id = 9;

-6— Cockroach LaBs

Model with TPC-C

SELECT

sum (ol quantity) How many?
FROM

order line
WHERE

ol _w_id = 5 Customers from LA

AND ol d id = 1
AND ol o id > 3000 Recentorders
AND ol i id = 49712

AND ol supply w id = 9;

-6—C0ckroach LABS Proprietary & Confidential

Model with TPC-C

SELECT

sum (ol quantity) How many?
FROM

order line
WHERE

ol _w_id = 5 Customers from LA

AND ol d id =1
AND ol o id > 3000 Recentorders
AND ol i id = 49712 Vitamix blender

AND ol supply w id = 9;

-6—C0ckroach LABS Proprietary & Confidential

Model with TPC-C

SELECT

sum (ol quantity) How many?
FROM

order line
WHERE

ol _w_id = 5 Customers from LA

AND ol d id = 1
AND ol o id > 3000 Recentorders

AND ol i id = 49712 Vitamix blender
AND ol supply w _id = 9; Supplied by Toulouse

-6—C0ckroach LABS Proprietary & Confidential

Model with TPC-C

SELECT

sum (ol quantity) How many?
FROM

order line
WHERE

ol _w_id = 5 Customers from LA

AND ol d id =1
AND ol o id > 3000 Recentorders
AND ol i id = 49712 Vitamix blender

AND ol supply w id = 9; Supplied by Toulouse

—Q—Cockroach LABS Proprietary & Confidential

Plan chosen by CockroachDB v19.2

scalar-group-by
|— index-join order line
| L — scan order lineRorder line stock fk idx
| L — constraint: /6/5/3/2/1/4: [/9/49712/5/1/3001 - /9/49712/5/1]
L — aggregations
L— sum

L — variable: ol quantity
WEL

Time = 254 ms F

-6— Cockroach LaBs

Plan chosen by CockroachDB v19.2

scalar-group-by
|— index-join order line
| L — scan order line@Rorder line stock fk idx
| L — constraint: /6/5/3/2/1/4: [/9/49712/5/1/3001 - /9/49712/5/1]

L— aggregations order line stock fk idx
L— sum ol supply w id=9
L — variable: ol quantity SUppIIEd by Toulouse

iE

. order line F
Time = 254 ms ol w_id=5
Orders from LA

-6— Cockroach LaBs

Plan chosen by CockroachDB v20.1

scalar-group-by

— select

| — scan order line
| — constraint: /3/20 5/1 - /5/1/3001]

| L flags: force-in ver
L— filters

F— ol i id = 49°

L— ol supply w 1 OOX

|

|

|

|

|

L — aggregations
L— sum

D e faster!

Time=1.4ms

-6— Cockroach LaBs

Summary

1. 2. 3.
Geg-d.istributed SQL For OLTP workloads, Help us build our
optimizers must be must consider WAN locality-aware optimizer.

locality-aware bandwidth and latency We are hiring!

Thank you.

becca@cockroachlabs.com
CockroachlLabs.com
github.com/cockroachdb/cockroach

Presented by Rebecca Taft Cockroach LABS

mailto:becca@cockroachlabs.com
https://www.cockroachlabs.com
https://www.github.com/cockroachdb/cockroach

—0O0ORACLE

e

— ——— —

—

e

——

P

e e
— =

= The Case for Converged Databases

Danica Porobic
Principal Member of Technical Staff
Oracle Database In-Memory

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions.

The development, release, timing, and pricing of any features or functionality described for Oracle’s products may
change and remains at the sole discretion of Oracle Corporation.

Copyright © 2019 Oracle and/or its affiliates. E

Historically, developers built large
monolithic applications using one
data store

Copyright © 2019 Oracle and/or its affiliates. E

These applications and data stores
become difficult to maintain, and
unresponsive to change over time

— < I e
PGy . | | = 5

Copyright © 2019 Oracle and/or its affiliates. E

This lead to an alternative approach, one
that has a separate database per
mMicroservice

-
limm

[eee]
@
(]
@
e E=== l. .‘I. .
®
o ®

Copyright © 2019 Oracle and/or its affiliates. E

@) -
[ol ol

Each database is specialized for a
workload or data type: document,
key-value, analytic, relational, graph

-
limm

[eee]
@
(]
7] L]
e E=== l. .‘I. .
®
o ®

Copyright © 2019 Oracle and/or its affiliates. E

@) -
[ol ol

The goal was to create service
independence using best-of-breed
databases for each workload or data type

-
limm

[eee]
@
(]
7] L]
e E=== l. .‘I. .
®
o ®

Copyright © 2019 Oracle and/or its affiliates. E

@) -
[ol ol

But each single-purpose database that is
deployed fragments the overall data

architecture

-
limm

[eee]
Q
(]
] L]
] == l. .‘I. .
[]
® ®

Copyright © 2019 Oracle and/or its affiliates. E

[]
=)

Single-purpose databases require apps to

use their proprietary APIs, language, and

transactions models instead of standards
like SQL

-
limm

[eee]
@
(]
7] L]
e E=== l. .‘I. .
®
o ®

Copyright © 2019 Oracle and/or its affiliates. E

@) -
[ol ol

Each single-purpose database has different
operational needs and limitations,
requiring unique management and skills

2 = &
& W dah
’ '* ’

Q
JSON - ® .
L . & ¢
Copyright © 2019 Oracle and/or its affiliates.

Data propagation is inherently difficult
and causes unavoidable data delays and
data divergence

[oee] foon] P [eee]
EVENT 2 EVENT EVENT = EVENT |
RPC EPS] b ﬁPq ﬁpﬁ
ETL ETL ETL ETL
REPLICATION REPLICATION REPLICATION REPLICATION
DB LINKS DB LINKS — DBLINKS DB LINKS 5
b — = o ©
- = S=== oma®
L . &

N
®
Copyright © 2019 Oracle and/or its affiliates. E

Separate security policies must be
implemented in every database
and must be re-implemented
when app or policies change

5° 5°

Copyright © 2019 Oracle and/or its affiliates. E

o
o
" Q

e TSNS

High availability and scalability

mechanisms and configuration are specific
to each single-purpose database

_P_B
B
o

[Crame———]
@)
Er— T — [e G [eee]
— Q] O
= o
[ol ol
@) -

Copyright © 2019 Oracle and/or its affiliates.

Cloud providers offer different proprietary
cloud services that require apps to change

when you change cloud

E— T — CTT— T — ET——
= q] =
=— > = |
| | |
P . B ey
Json) BUIRE e ¢ é = E=E=
[e e/ =

Copyright © 2019 Oracle and/or its affiliates.

Integrating fragmented databases to
create a complete, available, secure, and
scalable solution is complex and custom

-
limm

[eee]
Q
(]
] L]
] == l. .‘I. .
[]
® ®

Copyright © 2019 Oracle and/or its affiliates. E

[]
=)

Copyright © 2019 Oracle and/or its affiliates. E

Converge many databases, data models,
and apps into one container database

[eee] [eee] [eee]
= = I
S ®
° ® ®
Container Database

Copyright © 2019 Oracle and/or its affiliates. E

Or use multiple container databases

q ®, ®
. @

{JSON} === S=== o a®

1uson)| .

Container Database S U s Container Database °

Copyright © 2019 Oracle and/or its affiliates. E

A Multi-Model Database Radically
Simplifies Data Management

Viicroservices,

- ML Al R, . Graph,
OLTP Analytics - |?T, e Big Data Relational Documents Spatial
A EEE g
l 3 JSON
Traditional Next Generation Structured and Unstructured

Single Database Engine Supports all Workloads and Data

Copyright © 2019 Oracle and/or its affiliates. E

Thank you!

Copyright © 2019 Oracle and/or its affiliates.

Training for Speech
Recognition on Coprocessors

Sebastian Baunsgaard, Sebastian B. Wrede, Pinar Toziin
I'T University of Copenhagen

IT UNIVERSITY OF COPENHAGEN

reactions people who know me give when |
say | work on speech recognition A

IT UNIVERSITY OF COPENHAGEN

how did i get into this?

sebastians me
© " Could you supervise our MSc thesis?

What would you like to work on?

‘ Automatic speech recognition 3

A >
Why are you talking to me? ',;3.

We want to make it scalable

ok then

|.

IT UNIVERSITY OF COPENHAGEN

needed to add some
hardware dimension,
though

but most student’s
attitude when i talk

about hardware is like ..

IT UNIVERSITY OF COPENHAGEN

IT UNIVERSITY OF COPENHAGEN

> PCle3 16x PCle3
RTX 2070 16x 64 GB
16 GB DDR4 GTX 1080T| @=====p CPU?2 I—) DDR3
6 Core
— GTX 1080TI €=—p{ 26GHz
RTX 2070 1%
1 QP 64 GB
CPU 1 GTX 1080TI DDR3
4 Core
4.0 GHz CPU 1
RTX 2070 GTX 1080T]I <-|.) 6 Core
t 2.6 GHz
e SATA3 SSD b A A I HDD
Storage 1G Ether SATA3
PCle3 16x
s s 1 $ Tesla V100 CPU 2 sys 2 $
&) 12Core €= 96 GB DDR4
32GB 3.0 GHz

QP
Teggg/éoo (-I) 96 GB DDR4

CPU 1
12 Core

s sys109%

Sl (-l I S S

Storage

IT UNIVERSITY OF COPENHAGEN B Sl

training of acoustic model based on neural
networks on co-processors - time-to-accuracy

..... Sys]_$ - - Sy52$ I Sy510$ EEEESm Sy51$ - .- Sy52$ — Sy510$
20 ‘
i
|
30 “
'r i
. O
\
; 16 TTA(10) .
TTA(22)
TTA(8)
TTA(20.2)
201" 77A(19.2) e %Y T8N ~ s
VTONA MamNT
(I) 5(IJO 10I00 15I00 ZOIOO 25I00 30I00 35IOO (I) 5(I)0 10IOO 15I00 20l00 25IOO 3OIOO 35I00

Time (Minutes) Time (Minutes)

IT UNIVERSITY OF COPENHAGEN

conclusion

very powerful co-processors more and more widely
available for machine learning

but takes a lot to exploit, no free lunch as usual

need to invest further in improving ML libraries for
accelerating model training on heterogeneous hardware

on the other hand, low-budget platforms may be good
enough for your needs

Fault-tolerance is not a technical problem
Josh Leners, Two Sigma

Fault-tolerance is not a technical problem
Josh Leners, Two Sigma

This is not a financial talk:

This document is being distributed for informational and educational purposes only and is not an
offer to sell or the solicitation of an offer to buy any securities or other instruments. The information
contained herein is not intended to provide, and should not be relied upon for, investment advice.
The views expressed herein are not necessarily the views of Two Sigma Investments, LP or any of
its affiliates (collectively, “Two Sigma”). Such views reflect the assumptions of the author(s) of the
document and are subject to change without notice. The document may employ data derived from
third-party sources. No representation is made by Two Sigma as to the accuracy of such
information and the use of such information in no way implies an endorsement of the source of
such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may
be owned by entities other than Two Sigma. If so, such copyrights and/or trademarks are most
likely owned by the entity that created the material and are used purely for identification and
comment as fair use under international copyright and/or trademark laws. Use of such image,
copyright or trademark does not imply any association with such organization (or endorsement of
such organization) by Two Sigma, nor vice versa

Fault-tolerance
is an epistemological problem

Fault-tolerance
is an epistemological problem

Techniques (e.g., consensus) expand our knowledge

“When a single replica fails, we won’t lose
data and can still make progress.”
“We’ve survived a simulated partition”

“The cable cleaners unplugged a rack last
week and we were OK”

Fault-tolerance
is an epistemological problem

Techniques (e.g., consensus) can’t provide judgment

—

“What’s this k parameter?”

<

\ M [“ “Should I Paxos all the things?”

“What’s the impact of failure?”

Fault-tolerance isnotatechnicalproblem

is an epistemological problem

Byzantine fault tolerance won’t save you

“Making Byzantine Fault Tolerant
Systems Tolerate Byzantine Faults”
Clement et al.

Also, can you really just give up once you
go over k failures?

Fault-tolerance
is an epistemological problem

Opportunities:

1. Formalize propagation of impact

2. A global forum for sevo incidents

3. Formal methods in the wild

Lessons Learned Building a
Distributed Hypervisor

Michael A. Sevilla, lke Nassi
{michael.sevilla, ike.nassi}@tidalscale.com

TidalScale

TldQ lSCQ le Software-Defined Servers (SDS)

Traditional Virtualization

Applications

Libraries
SUSE

Michael Sevilla, Ike Nassi

Inverse Virtualization

Applications

~TidalScale”
orae

Libraries
DS se0 -
' | Applications
"Tida lScole |
SDS Libraries

openSUSE

HPTS'19 {michael.sevilla, ike.nassi}@tidalscale.com

Chattenges: New, Exciting Opportunities

1. Detect failure
2. Evict resources from server

3. Repair server and re-introduce

;/ > Nodes = >... Reliable

>\ - '
‘@ 0downtime (SLAs, upgrades, etc) | SPARE |

Michael Sevilla, ke Nassi HPTS'19

New Model for Distribution

A\
.

DB: NUMA compatibility

{michael.sevilla, ike.nassi}@tidalscale.com

Consensus

Consistency

uuuuuuuuuuuuuuuu

A 4

Ack

78

A 4

79

Read from
Leader

Wait till
update

80

Use

Durability

for

Preventing
Divergence

High
Availability

Con

.ency

81

@Tw

10001 11@
@1@

» ¢

“Transactions” ina | @@ér
Microservices World:
The Saga Continues ...

Pranta Das
Founder & CEO
Das Coders

18th International Workshop on High Performance Transaction Systém
(HPTS)
November 3-6, 2019

http://hpts.ws/

History of Sagas

* First proposed in a research paper titled “Sagas” by Hector
Garcia-Molina and Kenneth Salem, Dept. of Computer Science at
Princeton University, submitted on 7, January 1987. Also appeared in
SIGMOD '87 Proceedings of the 1987 ACM SIGMOD international
conference on Management of data (Pages 249-259) in San Francisco,
California, USA — May 27 - 29, 1987:

* https://dl.acm.org/citation.cfm?id=38742

 This advanced transaction model became popular in Enterprise
Application Integration (EAI) systems, which had Long—Lived
Transactions (LLTs), in the late 1990’s and early 2000’s.

e I had written a paper on a hybrid model called CHAT (CrossWorlds
Hybrid Asynchronous Transactions), that borrowed concepts from the
Saga model and the ConTract model, 16 years ago at HPTS 2003:

* https://drive.google.com/file/d /1 Tm30NmGiufi6tDhIBFTEUHDxt GsOoFW/vi

Ew
Coders

https://dl.acm.org/citation.cfm?id=38742
https://drive.google.com/file/d/1Tm3oNmGiuf16tDhIBFTEUHDxt_GsO0FW/view
https://drive.google.com/file/d/1Tm3oNmGiuf16tDhIBFTEUHDxt_GsO0FW/view

Why are Sagas making a comeback?

+ As monolithic applications are getting split-up into microservices, each microservice is responsible for making its own independent data storage and

persistence decislons.

+ For example, a standard 3 tier application in single monolithic process, such as the one, shown below, uses a single monolithic data store engine:

Monolithic App Tier

Flight
Reservation : Booking
. Service .
Service Service

Web Tier Hotel Car Rental

+ Microservices do not share data storage or persistence stot es. Each service could use|a different brand of datal storage engine.

Hotel Reservation
Micro-Service

Car Rental + ,

Web Tier | Micro-Service

Flight
Booking

Micro-Service 1

* So standard in-process ACID across microservices will not work. And 2-PC does not scale — O(n®) messages in the worst case scenario.

Data Tier

Data Tier
(MySQL)

Data Tier
(MongoDB)

Data Tier
(Postgres)

Each Saga has a bunch of Sub-Transactions and associated
Compensations (Rollb ecovery - Undo)

Data Tier
(MySQL)

Hotel Reservation
Micro-Service

1 je
1
1
1
1
1
1
. : Car Rental
Web Tier ! Micro-Service
1
:
1
1
1

Data Tier
(MongoDB)

Flight
Booking
Micro-Service

Backward Recovery (Requires Compensations to be Idempotent)
:Begin-Saga
Sub-Transaction-1: Make-hotel-reservation
If failed — go to :Abort-Saga (since Compensation Stack is Empty)
Otherwise Push Make-hotel-reservation onto Compensation-Stack

Data Tier
(Postgres)

Sub-Transaction-2: Rent-a-car
If failed — Pop Compensation Stack — Undo Make-hotel-reservation and go to :Abort-Saga
Otherwise Push Rent-a-car onto Compensation-Stack
Sub-Transaction-3: Book-a-flight
If failed — Pop Compensation Stack twice — Undo Rent-a-car, Undo Make-hotel-reservation and go to :Abort-Saga
:End-Saga-Success
Coders

T Ahnr+-Qann

Each Saga has a bunch of Sub-Transactions (Roll-Forward Recovery -
Redo)

Hotel Reservation Data Tier
Micro-Service (MySQL)

1

1

1

:

1

1
Car Rental . [Data Tier
Micro-Service ! (MongoDB)

:

1

1

1

1

1

Web Tier

Flight
Booking
Micro-Service

Data Tier
(Postgres)

e e R

Forward Recovery (Requires Sub-Transactions to be Idempotent)
:Begin-Saga
Sub-Transaction-1: Make-hotel-reservation
If failed — retry “indefinitely” with exponential-backoff until it succeeds.
Sub-Transaction-2: Rent-a-car
If failed — retry “indefinitely” with exponential-backoff until it succeeds.
Sub-Transaction-3: Book-a-flight
If failed — retry “indefinitely” with exponential-backoff until it succeeds.
:End-Saga-Success

Pattern-1: Centrally Coordinated Saga Execution - A specialized Saga
microservice coordinates the Saga and talks to all participant microservices

Saga

Saga Coordinating Distributed
Micro-Service Saga log
(Message Bus)

declaration

Hotel Reservation Data Tier
Micro-Service ! (MySQL)

Data Tier
Car Rental (MongoDB)
Micro-Service

Data Tier
(Postgres)

Flight

Web Tier ' Booking
Micro-Service

* Pros: Individual micro-services need not have to deal with Saga execution.

e Cons: Coordinator micro-service (albeit stateless) becomes a sinele point of failure

Pattern-2: Distributed Saga Execution — Each microservice runs it’s part of
the Saga and communicates with its peers

Saga
declaration

Distributed
Saga log
(Message

Hotel Reservation
Micro-Service

Data Tier
(MySQL)

Data Tier
(MongoDB)

Web Tier Car Rental
Micro-Service

Data Tier

(Postgres)

* Pros: No need for a Coordinator and thus no single pojnt of failure.

* Cons: Each micro-service has additional complexity since it needs to talk to other micro-services and write to the D(?S
Coders

Al ki i1+ nad cacca 1A

What if a compensation fails?

If a compensation fails to execute, then the Saga
enters a Heuristic state.

In such cases, sometimes the only way to fix the
Saga to bring it to a consistent state may be
through manual repair. This may be via a
phone-call or email to the system support staff to

fix the problem.

Coders

Other recent literature on this subject:

* Chris Richardson’s article on Microservices patterns:
https://microservices.io/patterns/data/saga.html

e Microsoft Azure Architecture Patterns:
https://docs.microsoft.com/en-us/azure/architecture/patterns/compen
sating-transaction

» Caitie McCaffrey’s talk at JonTheBeach @ JontheBeach (2017)

https://www.slideshare.net/JontheBeach /distributed-sagas-a-protocol-f
or-coordinating-microservices

https://microservices.io/patterns/data/saga.html
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-for-coordinating-microservices
https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-for-coordinating-microservices
https://www.slideshare.net/JontheBeach/distributed-sagas-a-protocol-for-coordinating-microservices

GQL Graph Query Language
A new ISO/IEC standard project

CREATE GRAPH SocialNetwork (
(Person {name STRING, dob DATE}),
(City {name STRING}),

(Person)-[LivesIn]->(City),
(Person)=[Knows]=(Person)

LivesIn

CREATE VIEW Cities {
FROM SocialNetwork
MATCH (tail)-[edge]->(city::City)
PROJECT GRAPH tail, edge, city

}

FROM Cities
MATCH ()-[connections]->()
PROJECT DISTINCT type(connections)

September 2019

10 countries for, 4 abstain, 1 against

7 countries volunteer experts including
U.S.A., China, U.K.

First international standard Database
Languages project since SQL in 1987

Information technology — Database languages — GQL

GQL
Early Working Draft
V2.2

ISO/IEC JTC 1/SC 32

Date: 2019-10-22

IWD 39075:202y(E)

The United States of America (ANSI)

The SQL and GQL
working group

Graph queries can examine structure, without knowing types or values

FROM Cities
MATCH ()-[connections]->()

PROJECT DISTINCT type(connections)

the best way to state a join

FROM Cities
MATCH (p:Person)-[LivesIn]->(c:City WHERE c.name = “Berlin”),

(p)=[KnowsJ=(friends:Person)
PROJECT p, friends

GQL is a graph language: not the graph language

Why SQL doesn't suck

is a function over a table, returning a table

(closure over tables) enables Spark’s mixture of SQL clauses and
user code. A DataFrame is a table, and everything in Spark is a chain of functions
transforming tables to tables, using relational algebra and SQL syntactic units

Property graph languages started out as

But they need to grow up, and allow

Stored data y3|ye
Read

Project

Procedure (statement|s])

Stored data Value Mutate

Stored data Taple
Read

Project

Procedure (statement|s])

Stored data Table Mutate

Stored data Graph

Read
Project

Procedure (statement|s])

Stored data Graph Mutate

Stored data Graph

Read
Project

Procedure (statement|s])

Stored data Graph Mutate

o S»

Record @

Project

Stored data Graph
Read

Procedure (statement|s])

Stored data Graph Mutate

GQL will codify the state of the art in graph data

Node and edge properties

SQL/PGQ 202x

RDF/SPARQL 1.1

~nodes only

Data Query: fixed pattern

Existential Query: RPQ

Vv

Data Query: RPQ

~ endpoints only

Table projection

Graph projection

Insert, update, delete

Named graphs

Read-only graph views

v

Updatable views

~simple only

Omnigraphs

Catalog of graphs

Graph schema

Transaction demarcation

Thank you!

