
Depending on
Appending
Append Is the Secret to Our Success
When Nodes Go Slow

Pat Helland
Salesforce
HPTS-2019

November 4th, 2019

These Are My
Personal Observations about

Trends in the Industry

Examples and suggestions are not
necessarily related to Salesforce.

Outline
•Introduction

•Examples of Append in Distributed Systems

•Appending Fast While Failing Gray

•Databases and Gray Failures

•Conclusion

2

HotOS 2017

50 Shades of Gray Failures…
• Gray failures:

– Servers & network routers slow down
– Software gets unresponsive (slow)

• Retries, garbage collection and more…
– Single node gray failures à wedge the cluster!

Gray failures seem to be happening more often
“As cloud systems increase in scale and complexity,

gray failure becomes more common”

• Gray failures are complex to deal with
– Did the server not answer because it’s dead?
– Did the server not answer because it’s slow?

3

Servers and Routers WILL Go Slow
When We Least Expect It

Can We Keep the System Fast?

Latency and Transactional Consistency
• Latency:

– Batch systems don’t worry about latency
• Intermittent slow latency OK for batch

– Online systems care a lot about latency!
• Measured SLA
• Human beings hate variable latency!

• Transactional consistency and bounded latency
– Transactional consistency depends on order and what’s gone before
– Most systems funnel their consistency through a single server or servers
– Serializability: Making changes look as-if they happen one at a time

4

Can we have serial order without delays?
Can we do this while servers run slow??

Tricks Up Our Sleeve…

5

Pre-allocating Where to Log
The Identity of Log Files Is

Usually Managed Centrally
To Start Recovery, a DB

Needs to Find Its Log Files

Central Management May
Stall from Gray Failure

Pre-allocate Log Locations

Quorum Appends
Log Replicas May Stall

Accept a Log Write when a
Quorum of the Replicas
Have Seen the Append

Use Quorum Logic
to Determine

the End of the Log

Pool of Compute
A Pool of

SQL Engines

Route Requests to
Any Available Engine
--

Like Microservices

SQL Engines Fight to Append

Order Depends on Appends
--

Optimistic Concurrency: Winners & Losers

Outline
•Introduction

•Examples of Append in Distributed Systems

•Appending Fast While Failing Gray

•Databases and Gray Failures

•Conclusion

6

Multi-Writer GFS (Google File System)
• Client à primary à secondary à tertiary
• Multiple concurrent writes AND primary failure!
• Different requests land at secondary and primary
• Unrepeatable reads after a primary crash!

No coordination of write order when failure happens!

Multi-Writer GFS, HDFS, and Cosmos (Scope)

7

CACM –
March 2010

HDFS (Hadoop Distributed File System)
• Distributed file system designed for Hadoop (MapReduce)
• Constrained to single writer for each file

Write order is
defined by client

Cosmos (Scope) – Distributed File System used beneath Bing
• Primary defines order unless it dies
• Secondary consults master CSM and truncates block size

Write order is defined by
primary unless failure

then defined by master

Latency Bounding: a Log Tale
• Apache Bookkeeper: A log for DBs or similar servers

– Database servers write to log files (ledgers) à Each write is called an entry
– Each ledger is kept on three servers called bookies

• Each write from the DB is sent to 3 bookies and waits for 2 acks
– Each write has a ledger-number and an entry-number
– When the entry (and all before it) are each ack-ed by 2 bookies, it’s durable

8

Tolerates
Slow Bookies

Flows Around
a Slow Bookie
Like a River
Around
a Big Rock

Ledger-IDs AND Entry-IDs are supplied
by the database to the store

Ledger-IDs must be remembered in a log-window

Entry-IDs are assigned by the DB by counting

Recovery explores a set of Ledgers (a log-window)
and finds the last entry by reading to the end

Who Defines the Location of the Append?

9

GFS

HDFS

Cosmos

Bookkeeper

Primary
Data Node

Client

Primary
Data Node

Client
(the DB)

Slow Appends
(Primary Data Node)

Slow Appends
(Client)

Slow Appends
(Primary Data Node)

Slow Appends
(DB Client Is Slow)

Slow Appends

Slow Appends

Slow Appends

No Slow Down
Log Append
Continues

Who Defines
Where an

Append Lands?

What Happens If
”Append-Picker”

Slows Down?

What Happens If
the Data Node
Slows Down?

What Happens If
”Append-Picker”

Fails?

Client Crashes à
File Append

Stops
Master Decides

Next Append
Location

DB Crashes à
File Append

Stops

CorruptionCorruption

Outline
•Introduction

•Examples of Append in Distributed Systems

•Appending Fast While Failing Gray

•Databases and Gray Failures

•Conclusion

10

Working Around Obstacles…

Planning for Delays when Using Zookeeper
• Zookeeper works with a leader and a leader election

– The leader does the work and the followers track a slightly delayed version
– This is fast when the follower is healthy
– When a leader fails: Leadership election can take a while
– When a leader goes slow (Gray Failure) all progress writing gets very slow!

• Assumptions about using Zookeeper
– Writes are sometimes slow

• Gray Failures may stall writes
– Stale reads can be fast if you:

• Read from one of the followers
• If response is slow, retry to another follower

11

Zookeeper
Writes Might Be Slow

Reads can be fast
if you let reads to be stale

Love the Ones You’re With (or Most of Them)

• Smart logs can assign append location
– Log append:

• Writing client requests append
• Next log append will be after, not necessarily immediately after last append

– Quorum log append:
• Only when W of the log servers agree on the target location for an append will it be added to the log

12

Gifford’s Algorithm:

R + W > N
SOSP 1979

Append: Logging Client Writes to ”N” and Waits for “W”
Append: Logging Servers Coordinate Until ”W” Servers Agree

on the Log-Address for the Append

Knowing WHERE to Log Can Be a Problem
• Allocation of log-files is a challenge

– Typically, this is centralized in the system
– As the system becomes distributed, this is typically

centralized in Zookeeper or some equivalent system
• Centralized selection of log files can stall !

– Just picking where to write can have gray failures!
• I need to log and know where I’m logging!

– The files of the log must be allocated
– The location of the log files must be recorded!
– Recording in Zookeeper might stall

• Sometimes for minutes!
– Solution: Preallocate hours of log files

13

Where Do I Go Next?
There Must Be a Plan!

Jittery Preallocation and Stale Reads
• Preallocate a window of log file names

– This can be done using Zookeeper or some equivalent
– Sometimes, this will go slow as the ZK leader has a Gray Failure
– Preallocate a lot of files to support hours of logging

• On crash restart do a stale read of the window of log file names
– It’s OK if it’s not the latest
– Do a binary search of the log files in the log window
– Find the latest log file name with log contents in it

14

A Stale Log Window (List of Log Files) Can Work Well for Crash Recovery
--

After a Crash, Explore the Log Window for the Last Written File
--

A Strongly Consistent List (e.g. Kept in Zookeeper) Can Be Used

Outline
•Introduction

•Examples of Append in Distributed Systems

•Appending Fast While Failing Gray

•Databases and Gray Failures

•Conclusion

15

SIGMOD
2018

Amazon Aurora: Tolerates Slow Storage (e.g. Logs)
• AWS Aurora is a database for the cloud (supporting MySQL and Postgres)

– 3 Availability Zones (AZs) with 2 storage nodes on each AZ
• DB engine ships redo logs to 6 storage

nodes and waits for 4 to answer
– 4 out of 6 tolerates AZ+1 failures

• Redo log’s LSN used to coordinate quorum
delivery across storage nodes

16

X

X
X
X

X

X

X
X

X
X
X

AZ1 AZ2 AZ3
3/6 Read
4/6 Write

Quorum
Survives

AZ Failure
Redo Log’s LSN

is assigned by
Aurora DB.

Safe Receipt of
LSN threshold is
gossiped across
storage nodes.

Assigns LSN
Number

--

“Append
Picker”

Aurora
DB

Tolerates Slow Storage Servers
Does NOT Tolerate a Slow Aurora DB

Hyder: Tolerates Slow Databases (not Logs)
• Hyder is a database system with many

DB servers sharing a single DB log
– Snapshot: Start TX based on point-in-time
– Intention: Log the hoped for TX’l changes

– Meld: Check for conflicts; commit or abort
• Only need to check in the conflict-zone since the snapshot

– Commit or Abort by logging the state

• Hyder tolerates slow DB servers reading/writing the same shared log
– If one DB server is slow, the rest will continue à App requests retry to other servers

• But what if log servers are slow???
– A slow log can mean a slow Hyder DB!

17

Can We Do Hyder with Quorum Logs?
• Latency bounding for the log requires log writes be written in parallel

– No single log replica can define the order (or it can stall the write)
– No single DB replica can define the order (or it can stall the write)

• Hyder requires the intentions written to the log be in order
– Writes must be ordered by quorum

• Each of the N log replicas must:
– Receive intention requests from many databases
– Propose an order for the intentions and negotiate with the other replicas

• Reordering as necessary to get
an agreed order for the intentions

– Confirm quorum with “W” total replicas of the log
– Acknowledge transaction commits when meld succeeds

18

A Bit Like
Herding Cats!

Outline
•Introduction

•Examples of Append in Distributed Systems

•Appending Fast While Failing Gray

•Databases and Gray Failures

•Conclusion

19

Depending on Appending

20

In the future, we will be

Depending on Appending
For an increasing number of things….

Gray failures will be part of our lives

System hardware and software will sometimes “go slow”!

Strongly consistent SQL databases are important

Important to work with low latency and without stalls for OLTP !

Append is the Secret Sauce to Avoid Stalls
--

Ensure multiple writers are appending and any can stall
Ensure multiple log replicas receive appends and any can stall

21

That’s All Folks!!

