Depending on
Appending

Append Is the Secret to Our Success
When Nodes Go Slow

These Are My
Personal Observations about
Trends in the Industry

Pat Helland

Salesforce
HPTS-2019

November 4th, 2019

Examples and suggestions are not
necessatrily related to Salesforce.

Outline

‘Introduction

Examples of Append in Distributed Systems
Appending Fast While Failing Gray
Databases and Gray Failures

Conclusion

90 Shades of Gray Failures...

= Gray Failure: The Achilles’ Heel of Cloud-Scale Systems
* Gray failures:
u Peng Huang Chuanxiong Guo Lidong Zhou Jacob R. Lorch
Microsoft Research Microsoft Research Microsoft Research Microsoft Research
Johns Hopkins University
— Servers & network routers slow down
Microsoft Azure Microsoft Azure Microsoft Azure

ABSTRACT

— Software gets unresponsive (slow)
 Retries, garbage collection and more...

als
ity: that th

— Single node gray failures > wedge the cluster! HotOS 2017

4
. . N /
Gray failures seem to be happening more often R4
“ . . 5 /7
As cloud systems increase in scale and complexity, > -
gray failure becomes more common”
J

- Gray failures are complex to deal with Servers and Routers WILL Go Slow
— Did the server not answer because it's dead? When We Least Expect It

— Did the server not answer because it's slow? | cqn We Keep the System Fast?

Latency and Transactional Consistency

- Latency:
— Batch systems don’t worry about latency
* Intermittent slow latency OK for batch
— Online systems care a lot about latency!
* Measured SLA
* Human beings hate variable latency!

* Transactional consistency and bounded latency
— Transactional consistency depends on order and what's gone before
— Most systems funnel their consistency through a single server or servers
— Serializability: Making changes look as-if they happen one at a time

Can we have serial order without delays?

Can we do this while servers run slow??

Tricks Up Our Sleeve...

salesforce

Pre-allocating Where to Log

To Start Recovery, a DB
Needs to Find Its Log Files

The Identity of Log Files Is
Usually Managed Centrally

Central Management May
Stall from Gray Failure

Pre-allocate Log Locations

A Pool of Any Available Engine

Quorum Appends Accept a Log Write when a Use Quorum Logic
, Quorum of the Replicas to Determine
Log Replicas May Stall Have Seen the Append the End of the Log
Pool of Compute | rte requests to SQL Engines Fight to Append

SQL Engines

Like Microservices Optimistic Concurrency: Winners & Losers

Outline

‘Introduction

Examples of Append in Distributed Systems
Appending Fast While Failing Gray
Databases and Gray Failures

Conclusion

Multi-Writer GFS, HDFS, and Cosmos (Scope)

Multi-Writer GFS (Google File System)

 Client = primary = secondary -2 tertiary

* Multiple concurrent writes AND primary failure!
» Different requests land at secondary and primary
» Unrepeatable reads after a primary crash!

No coordination of write order when failure happens!

practice

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

GFS:
Evolution on
Fast-Forward

CACM -
March 2010

HDFS (Hadoop Distributed File System)
* Distributed file system designed for Hadoop (MapReduce)
e Constrained to single writer for each file

Write order is
defined by client

Cosmos (Scope) — Distributed File System used beneath Bing

* Primary defines order unless it dies
e Secondary consults master CSM and truncates block size

Write order is defined by
primary unless failure
then defined by master

Latency Bounding: a Log Tale

« Apache Bookkeeper: A log for DBs or similar servers

— Database servers write to log files (ledgers) > Each write is called an_entry
— Each ledger is kept on three servers called bookies

« Each write from the DB is sent to 3 bookies and waits for 2 acks

— Each write has a ledger-number and an entry-number
— When the entry (and all before it) are each ack-ed by 2 bookies, it’s durable

Ledger-IDs AND Entry-IDs are supplied Tolerates
by the database to the store Slow Bookies
Ledger-IDs must be remembered in a log-window Elows Around
a Slow Bookie
Entry-ID igned by the DB b ti . .
ntry-IDs are assigned by the y counting Like o River
Recovery explores a set of Ledgers (a log-window) Around

and finds the last entry by reading to the end a Big Rock

Who Defines the Location of the Append?

Who Defines What Happens If || What Happens If What Happens If
Where an "Append-Picker” the Data Node "Append-Picker”
Append Lands? Fails? Slows Down? Slows Down?
GFS Primary Slow Appends SR
Data Node (Primary Data Node)
Clier\t Crashes 2> Slow Appends
HDFS Client File Append Slow Appends .
Stops (Client)
SR Master Decides Slow Appends
Cosmos Data Node Next Append Slow Appends .
Location (Primary Data Node)
Client DI?T Crashes 2> No Slow Down Slow Appends
Bookkeeper File Append Log Append .
(the DB) Stops Continues (DB Client Is Slow)

Outline

*Introduction
Examples of Append in Distributed Systems
Appending Fast While Failing Gray

. .

Databases and Gray Failures

Conclusion

Working Around Obstacles...

10

Planning for Delays when Using Zookeeper

-« Zookeeper works with a leader and a leader election
— The leader does the work and the followers track a slightly delayed version
— This is fast when the follower is healthy
— When a leader fails: Leadership election can take a while
— When a leader goes slow (Gray Failure) all progress writing gets very slow!

« Assumptions about using Zookeeper Zookeeper
— Writes are sometimes slow

- Gray Failures may stall writes Writes Might Be Slow
— Stale reads can be fast if you:
 Read from one of the followers Reads can be fast

- If response is slow, retry to another follower if you let reads to be stale

11

Love the Ones You’re With (or Most of Them)

Gifford’s Algorithm:
g * Weighted Voting for Replicated Data
David K. Gifford
R W N Stanford University and Xerox Palo Alto Research Center
- Smart logs can assign append location
. . . 1. Introduction
— - In a new algorithm for maintaining replicated data,
Log append - every cop;yl of a repllicated file is assigned some number of
.y . votes. Every transaction collects a read quorum of r votes The requirements of distributed computer systems
° Wl’ltl ng Cl |ent I’eq UeStS a p pe nd to read a file, and a write quorum of w votes to write a file, are stimulating interest in keeping copies of the same

* Next log append will be after, not necessarily immediately after last append
— Quorum log append:
* Only when W of the log servers agree on the target location for an append will it be added to the log

Append: Logging Client Writes to ”"N” and Waits for “W”

Append: Logging Servers Coordinate Until "W” Servers Agree
on the Log-Address for the Append

12

salesforce

Knowing WHERE to Log Can Be a Problem

* Allocation of log-files is a challenge

— Typically, this is centralized in the system

— As the system becomes distributed, this is typically
centralized in Zookeeper or some equivalent system

 Centralized selection of log files can stall ! Where Do | Go Next?\ |
— Just picking where to write can have gray failures! There Must Be a Plan!

* | need to log and know where I’'m logging!
— The files of the log must be allocated
— The location of the log files must be recorded!
— Recording in Zookeeper might stall

« Sometimes for minutes!

— Solution: Preallocate hours of log files

13

Jittery Preallocation and Stale Reads

 Preallocate a window of log file names
— This can be done using Zookeeper or some equivalent
— Sometimes, this will go slow as the ZK leader has a Gray Failure
— Preallocate a lot of files to support hours of logging

*On crash restart do a stale read of the window of log file names
—It's OK if it's not the latest
— Do a binary search of the log files in the log window
— Find the latest log file name with log contents in it
A Stale Log Window (List of Log Files) Can Work Well for Crash Recovery

After a Crash, Explore the Log Window for the Last Written File

A Strongly Consistent List (c.q. kept in Zookeeper) Can Be Used

14

Outline

‘Introduction

Examples of Append in Distributed Systems
Appending Fast While Failing Gray
Databases and Gray Failures

Conclusion

15

Amazon Aurora: Tolerates Slow Storage (e.g. Logs)

« AWS Aurora is a database for the cloud (supporting MySQL and Postgres)
— 3 Avalilability Zones (AZs) with 2 storage nodes on each AZ

* DB engine ships redo logs to 6 storage

nodes and waits for 4 to answer
— 4 out of 6 tolerates AZ+1 failures

* Redo log’s LSN used to coordinate quorum

delivery across storage nodes

Aurora
DB

Assigns LSN
Number

“Append
Picker”

Redo Log’s LSN \i
is assigned by
Aurora DB.
Safe Receipt of
LSN threshold is
gossiped across
storage nodes.

B e e e e e e T R e e S

% % 3/6 Read

A e
1 :
% %l X1 [4/6 Write E
] [X] X] Quorum E
1 '

[X] [X]I Survives —
X1 X AZ Failure |

- e

Amazon Aurora: On Avoiding Distributed Consensus for I/Os,

SIGMOD

Commits, and Membership Changes

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta
2018 Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice

ABSTRACT

Amazon Aurora is a high-throughput cloud-native relational data-

base offered as part of Amazon Web Services (AWS). One of the more

novel differences betws

how it pushes redo processing to a multi-tenant scale-out storage to show that,
ice purpose-built for Aurora. Doine so reduces networking

een Aurora and other relational databases is

Tengiz Kharatishvilli, Xiaofeng Bao
Amazon Web Services

database instances in RDS led to the design requirements for Aurora,
a high-throughput cloud-native relational database.

In our earlier paper [12], we provided rerview of the design
considerations behind Aurora. A key cor ution of that paper is
on a fleet-wide basis, it is insufficient to treat failures

. : i

Tolerates Slow Storage Servers
Does NOT Tolerate a Slow Aurora DB

16

Hyder: Tolerates Slow Databases (not Logs)

* Hyder IS a database system Wlth many Hyder — A Transactional Record Manager for Shared Flash
L] - ogs T
DB servers sharing a single DB log o oo Unversty o ol o Barare
philbe @microsoft.com colinre@microsoft.com sudipto@cs.ucsb.edu
— Snapshot: Start TX based on point-in-time
P . > Hydersupors eads nd s on dened ol ik st st mdh o e and nesworking o pe ool xw =
— Inte ntlon: Log the hoped for Tx’l Changes servers that phavc sharcd‘acccss log:: large pool of network- 11 Today s Alternative to Hyder

addressable raw flash chips. The flash chips store the indexed To understand the value of Hyder’s no-partition scale-out feature.

ABSTRACT database or application. It is therefore well-suited to a data

records as a multiversion log-structured database. Log-structuring

N 3 sider toda: y ll rnative: a data center architecture for data-
. . lev 5 th h}:h d om l/O ate f ﬂash and autcmatlcally b b d h own in Figure 2. The database is partition-

. .
— Meld: Check for conflicts; commit or abort e . M s s et O s s e S, The s of b plcaion b ik
twt lp artitio g! ' pp l ' - fr q l t th d t bas, apsulated in stored proce-
napshot, logs its Pd tes d- a"d e T coet ot th sl aria s i serers st colocoed

* Only need to check in the conflict-zone since the snapshot
— Commit or Abort by logging the state

* Hyder tolerates slow DB servers reading/writing the same shared log
— If one DB server is slow, the rest will continue - App requests retry to other servers

* But what if log servers are slow???
— A slow log can mean a slow Hyder DB!

17

Can We Do Hyder with Quorum Logs?

- Latency bounding for the log requires log writes be written in parallel

— No single log replica can define the order (or it can stall the write)
— No single DB replica can define the order (or it can stall the write)

* Hyder requires the intentions written to the log be in order

— Writes must be ordered by quorum .
. _ A Bit Like
« Each of the N log replicas must: _
— Receive intention requests from many databases Herding Cats!
— Propose an order for the intentions and negotiate with the other replicas I

* Reordering as necessary to get
an agreed order for the intentions

— Confirm quorum with “W” total replicas of the log
— Acknowledge transaction commits when meld succeeds

Outline

‘Introduction

Examples of Append in Distributed Systems
Appending Fast While Failing Gray
Databases and Gray Failures

Conclusion

19

Depending on Appending

Gray failures will be part of our lives

System hardware and software will sometimes “go slow”!

Strongly consistent SQL databases are important

Important to work with low latency and without stalls for OLTP |

Append is the Secret Sauce to Avoid Stalls

Ensure multiple writers are appending and any can stall
Ensure multiple log replicas receive appends and any can stall

In the future, we will be

Depending on Appending

For an increasing number of things....

20

That’s All Folks!!

