Decentralizing Distributed
Consensus with Faster Paxos

[Distributed consensus revised]

Heidi Howard @ Cambridge University
heidi.howard@cl.cam.ac.uk

mailto:heidi.Howard@cl.cam.ac.uk

TL;DR

Linearizabllity is not as expensive as you might think.

Paxos and friends offer a one-size-fits-all solution to distributed consensus
which may not perform best for every application.

Faster Paxos demonstrates that decentralised consensus algorithms can
perform better than we previously believed.

‘_’ I . . | .I.I "
Timed scrial/ch'ular

& A -atomicity

; \ P Eventual
d N Reaaantlal & lincarizability
! 3 equentia Prefix A
' - -
’ lincanizable
‘
’ a—m————
' W’cak "o \‘. " ‘~
' ‘afe . e . - . »
: fork-lin. “ e o "y Staleness-based ™, Sfrong
: | ’ # R ' models %, cventual
‘ s ’ .
: ’ models ' \
. . ¥ . il [.
' X y ' "' . ; *
: BOUI\dCd RC"‘I.("“c ‘\ l 0’ Pr()cc\\()r \ o ‘\ ‘\
' e . - s , " ' »
¢ fork-join causal \ Prefix ! /" CYMERETIETON ™,] k-atomicity b Eventual
' - . s R ' ¥ g mod ls . " . . ¢
5 causal '.. SQQU"n"al ’ - » C . ‘s‘ H Bounded # * ‘o. scnah,ab"“y
: A ' ; v/ Weakordering % [/ staleness \ A
' ' ' o . T YD '
; ' : Per-key Per-record ‘o Vo & ’ sesscesscssacssacsancsscans .
' . . . ‘.)
' ' sequential umeline ¢ : 8 Delta ' - ;
' Fork ' ' \ ' Release ' " ' :
; i : ‘e . + Composite and tunable
' : : ' ' & ' 8 s k-regular ' ' ;
- sequential ' ' ' : ' X ﬁ ' ' -
\ : E s : Coherence §1 " ' ; At :
' Fork* . ' T Lazy release ' : ; : ;
.. ', Per-obi 1 'y A £l : + » Hybnd '
’ ‘ r-object B X ' ' G5 o
‘Fork-join .’ . it J:“ R Scope ‘4 [B T'unable E
v causa ‘ ' g
' ; \ oo ' | ' o Rationing '
\ causal <= . i \ ’ ;o] : e RedBlu '& E
- L
' ; ' ' Entry s Y PBS ’ ' e |
. ’ . v ' - '
; § 3 on / \tvisibilit " ; * Lo :
- . ’ . ~ ”, LAY 4 ' '
\ Slow - ., Location \ \ PRS ; ' o Vector-ficld |
. » p - Pl ‘ ’ ' . . '
. Fork-based memory >ua s d + e PBS <k.t>-staleness !
“\ ,. k-staleness,, ; :
“\mweb l" ~“-.-""' : :
<" Writes-follow-reads Read-your-writes Monotonic Writes Monotonic Reads \

(WFR)

“trseeo.._ Session models

(RYW)

(MW) (MR)

Eventual

f

_p Quiescent

Weak —

[CUSR 2016]

https://dl.acm.org/citation.cfm?id=2926965

| . Linearizability
But | don’t trust “

State Machine Replication

NS F AN G

NetwerR

Multi-Paxos

1. Select a node to be leader.

2. Nodes send operations to leader, the leader orders them and replicates
them to the other nodes.

3. Once an operation has been replicated to a majority of nodes then it can
be applied to the state machines.

4. If the leader falls, it is replaced by another node. This process requires
agreement from a majority of nodes.

// \ copy opt N

// \ copy opt N

‘_’ I . . | .I.I "
Timed scrial/ch'ular

& A -atomicity

" 5
y . x
'] -
L . Sequential Prefix
' - -
’ lincarizable
4
’ a—m————
' Weak . ¥ ol
: fork-lin. Safe . g
- X - s g -
: \ . Per-object
' : models \ oy
0. ‘\ ’ A} "'. .“~
- BOU"dCd Rc“l.ti“]c ‘\ 0’ Pr()cc\-\-()r ‘\ ol ‘\
' e . - ¢ b s "
¢ fork-join causal N\ Prefix / "/ syn::::::m X
i causal \ seque ntial : .y, |
3 A] s v 4 Weak ordering
- : e Per-ke %2 5
' ’ : CT-KCY Per-record | '
‘ ‘ > . . s L |
: Fork ' b sequential timeline 3! Releass '
: oK ‘ ’ ' \ & ¥ " .
' sequential ' ; -) i ‘
. : K : Coherence 30 '
' Fork* , : " Lazy release ;
\ -] Per-ob 1 'y ’ [
stk van : v Per-object ' s .. ‘
sFork-join .’ . — J §io Scope ’
\ « causal L} [
\ causal = . 5o ’ ;
“ ! ' ; "
\ ! \ Entry ?
. ’ Y ’
Y Mow / s, Location ./
'\ Slow g . i
. Fork-based memory .

.
. models .-
\‘ ‘l
-~ -

‘."" Writes-follow-reads Read-your-writes
" (WFR) (RYW)
Teeee.___Session models

-
‘.-.-"

Monotonic Reads
(MR)

Monotonic Writes
(MW)

,

Eventual
linearizability

A

/"Staleness-based ™, Strong
: models " eventual
: k-atomicity \ B 2ineat
; Bounded f 4 serializability
¢ staleness . A
' Delta : ; :
: k-regular : + Composite and tunable |
f ﬁ : models
: : i o Hybrid ;
- ; + * Tunable E
' : i e Rationing :
' PBS / i e RedBlue :
) A '] o " -4 :
\ t-visibility : : (,(m" :
. PRS '.' 5 e Vector-ficld ;
k-stalenesss + e PBS <k.t>-staleness !
|

Eventual

f

_p Quiescent

Weak —

18

[CUSR 2016]

https://dl.acm.org/citation.cfm?id=2926965

Distributed yet highly centralised

The leader Is a single point of serialisation.
However, it also:
e Limits throughput as it becomes a bottleneck
* Increases latency (3 steps instead of 2)

Alternatives have been proposed but have seen little adoption.

19

Fast Paxos

Fast Paxos Is similar to Paxos, except that
some proposal numbers are fast.

These use quorums of 3/4 of nodes instead of
1/2 of nodes.

However, any node can send a value directly to
the other nodes, bypassing the leader.

21

Distrib. Comput. (2006) 19:79-103
DOI 10.1007/s00446-006-0005-x

ORIGINAL ARTICLE

Fast Paxos

Leslie Lamport

Received: 20 August 2005 / Accepted: 5 April 2006 / Published online: 8 July 2006

© Springer-Verlag 2006

Abstract As used in practice, traditional consensus
algorithms require three message delays before any pro-
cess can learn the chosen value. Fast Paxos is an exten-
sion of the classic Paxos algorithm that allows the value
to be learned in two message delays. How and why the
algorithm works are explained informally, and a TLA™
specification of the algorithm appears as an appendix.

Keywords Consensus - Fault tolerance - Distributed
algorithms - Paxos

1 Introduction

The consensus problem requires a set of processes to
choose a single value. This paper considers the consen-
sus problem in an asynchronous message-passing system
subject to non-Byzantine faults. A solution to this prob-
lem must never allow two different values to be chosen
despite any number of failures, and it must eventually
choose a value if enough processes are nonfaulty and
can communicate with one another.

In the traditional statement of the consensus problem,
each process proposes a value and the chosen value must
be one of those proposed values. Itis not hard to see that
any solution requires at least two message delays before
any process learns what value has been chosen [3]. A
number of algorithms achieve this delay in the best case.
The classic Paxos algorithm [7,9] is popular because it

L. Lamport (<)

Microsoft Research,

1065 La Avenida,

Mountain View, CA 94043, USA

achieves the optimal delay in the normal case when used
in practical systems [12].

The apparently optimal number of message delays
required by traditional consensus algorithms is illusory -
an artifact of the traditional problem statement in which
values are chosen by the same processes that propose
them. In many applications, values are not proposed by
the same processes that choose the value. For exam-
ple, in a client/server system, the clients propose the
next command to be executed and the servers choose
one proposed command. When a traditional consensus
algorithm is used in such a system, three message delays
are required between when a client proposes a com-
mand and when some process learns which command
has been chosen.

A fast consensus algorithm is one in which a process
can learn the chosen value within two message delays of
when itis proposed, evenif values are proposed and cho-
sen by different sets of processes. It has been shown that
no general consensus algorithm can guarantee learn-
ing within two message delays if competing proposals
collide — that is, if two different values are proposed
concurrently [11]. A fast consensus algorithm therefore
cannot always be fast in the event of collision.

Fast Paxos is a fast consensus algorithm that is a var-
iant of classic Paxos. In the normal case, learning oc-
curs in two message delays when there is no collision
and can be guaranteed to occur in three message de-
lays even with a collision. Moreover, it can achieve any
desired degree of fault tolerance using the smallest pos-
sible number of processes.

The basic idea behind Fast Paxos also underlies an
carlier algorithm of Brasileiro et al. [1]. However, they
considered only the traditional consensus problem, so
they failed to realize that their algorithm could be easily

@ Springer

[DC 2006]

https://link.springer.com/content/pdf/10.1007/s00446-006-0005-x.pdf

New algorithm, new problems

Fast Paxos solves our issue 23 (7‘.3)

with leaders but It introduces
the iIssue of conflicts.

Recovering from conflicts is

expensive. - > —>
2

23

Introducing Faster Paxos

Faster Paxos Is similar to Paxos, except that a leader can choose to allow
any node to can send values directly to a chosen majority quorum of nodes.

24

Faster Paxos - Conflicts

25 (7‘.3)

P

2A
(3,F) o3 (F,0)

Requirements of consensus

The aim of distributed consensus is to decide a single value.
Validity - The decided value must have been be proposed by some node.
Agreement - All node must learn the same decided value.

Termination - Eventually, all nodes must learn the decided value.

Is this what we actually want??

27

Requirements of faster consensus

The aim of distributed consensus is to decide non-empty ordered set of
values.

Validity - Each decided value must have been be proposed by some node.
Agreement - All node must learn the same ordered set of decided values.

Termination - Eventually, all nodes must learn the set of decided values.

28

Faster Paxos - Conflict resolution

When a conflict is detected, 28 (8 [cF,3))

each node retries with the set
of values it has seen. 2A(8, <, ZV
Each node will see the same \

values so next time the
proposals will not conflict.

29

Summary

Faster Paxos solves consensus with optimal latency in the absence of
conflicts/failures. Any conflict are resolved in 2 additional steps.

Faster Paxos however would not be suit to systems where:
 Performance is not a concern.
 Node failures and/or network partitions are very common.

 One node is the source of most options.

30

Faster Paxos is one of many options

Flexible Paxos: Quorum Intersection Revisited

Heidi Howard!, Dahlia Malkhi?, and Alexander Spiegelman?®

1 VMware Research, Palo Alto, CA, USA; and
University of Cambridge Computing Laboratory, Cambridge, UK
heidi.howard@cl.cam.ac.uk

2 VMware Research, Palo Alto, CA, USA
dahliamalkhi@gmail.com

3 VMware Research, Palo Alto, CA, USA; and
Viterbi Dept. of Electrical Engineering, Technion Haifa, Haifa, Israel
sashas@tx.technion.ac.il

——— Abstract

Distributed consensus is integral to modern distributed systems. The widely adopted Paxos
algorithm uses two phases, each requiring majority agreement, to reliably reach consensus. In
this paper, we demonstrate that Paxos, which lies at the foundation of many production systems,
is conservative. Specifically, we observe that each of the phases of Paxos may use non-intersecting
quorums. Majority quorums are not necessary as intersection is required only across phases.
Using this weakening of the requirements made in the original formulation, we propose Flex-
ible Paxos, which generalizes over the Paxos algorithm to provide flexible quorums. We show
that Flexible Paxos is safe, efficient and easy to utilize in existing distributed systems. We discuss
far reaching implications of this result. For example, improved availability results from reducing
the size of second phase quorums by one when the system size is even, while keeping majority
quorums in the first phase. Another example is improved throughput of replication by using
much smaller phase 2 quorums, while increasing the leader election (phase 1) quorums. Finally,

non intersecting quorums in either first or second phases may enhance the efficiency of both.
1998 ACM Subject Classification C.2.4 Distributed Systems
Keywords and phrases Paxos, Distributed Consensus, Quorums

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.25

1 Introduction

Distributed consensus is the problem of reaching agreement in the face of failures. It is a
common problem in modern distributed systems and its applications range from distributed
locking and atomic broadcast to strongly consistent key value stores and state machine
replication [36]. Lamport’s Paxos algorithm [19, 20] is one such solution to this problem and
since its publication it has been widely built upon in teaching, research and practice.

At its core, Paxos uses two phases, each requires agreement from a subset of participants
(known as a quorum) to proceed. The safety and liveness of Paxos is based on the guarantee
that any two quorums will intersect. To satisfy this requirement, quorums are typically
composed of any majority from a fixed set of participants, although other quorum schemes
have been proposed.

In practice, we usually wish to reach agreement over a sequence of values, known as
Multi-Paxos [20]. We use the first phase of Paxos to establish one participant as a leader and
the second phase of Paxos to propose a series of values. To commit a value, the leader must

@*@ © Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman;

Rzt licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).

Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 25; pp. 25:1-25:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Flexible Paxos:

Quorum intersection

Technical Report TR

Number 935

Computer Laboratory

Distributed consensus revised

Heidi Howard

April 2019

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/hwww.cl.cam.ac.uk/

Distributed consensus

A Generalised Solution to Distributed Consensus

Heidi Howard, Richard Mortier
University of Cambridge
first.last@cl.cam.ac.uk

Abstract

Distributed consensus, the ability to reach agreement in the face of failures and
asynchrony, is a fundamental primitive for constructing reliable distributed systems
from unreliable components. The Paxos algorithm is synonymous with distributed
consensus, yet it performs poorly in practice and is famously difficult to understand.
In this paper, we re-examine the foundations of distributed consensus. We derive an
abstract solution to consensus, which utilises immutable state for intuitive reasoning
about safety. We prove that our abstract solution generalises over Paxos as well as the
Fast Paxos and Flexible Paxos algorithms. The surprising result of this analysis is a
substantial weakening to the quorum requirements of these widely studied algorithms.

1 Introduction

We depend upon distributed systems, yet the computers and networks that make up these systems
are asynchronous and unreliable. The longstanding problem of distributed consensus formalises
how to reliably reach agreement in such systems. When solved, we become able to construct
strongly consistent distributed systems from unreliable components [13] 21} |4, 17]. Lamport’s
Paxos algorithm [14] is widely deployed in production to solve distributed consensus [5, (6], and
experience with it has led to extensive research to improve its performance and our understanding
but, despite its popularity, both remain problematic.

Paxos performs poorly in practice because its use of majorities means that each decision re-
quires a round trip to many participants, thus placing substantial load on each participant and
the network connecting them. As a result, systems are typically limited in practice to just three
or five participants. Furthermore, Paxos is usually implemented in the form of Multi-Pazos, which
establishes one participant as the master, introducing a performance bottleneck and increasing
latency as all decisions are forwarded via the master. Given these limitations, many production
systems often opt to sacrifice strong consistency guarantees in favour of performance and high
availability (7,3} 18]. Whilst compromise is inevitable in practical distributed systems [10], Paxos
offers just one point in the space of possible trade-offs. In response, this paper aims to improve
performance by offering a generalised solution allowing engineers the flexibility to choose their own
trade-offs according to the needs of their particular application and deployment environment.

Paxos is also notoriously difficult to understand, leading to much follow up work, explaining the
algorithm in simpler terms [20] 15,19, 23] and filling the gaps in the original description, necessary
for constructing practical systems [6, 2]. In recent years, immutability has been increasingly widely
utilised in distributed systems to tame complexity [11]. Examples such as append-only log stores [1,
8] and CRDTs [22] have inspired us to apply immutability to the problem of consensus.

revisited, 2016

revised, 2018

31

A generalised solution

to distributed
consensus, 2019

https://arxiv.org/abs/1902.06776
https://arxiv.org/abs/1902.06776
https://arxiv.org/abs/1902.06776
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7094/pdf/LIPIcs-OPODIS-2016-25.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7094/pdf/LIPIcs-OPODIS-2016-25.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7094/pdf/LIPIcs-OPODIS-2016-25.pdf

Heidi Howard @ Cambridge University
heidi.howard@cl.cam.ac.uk

32

mailto:heidi.Howard@cl.cam.ac.uk

