
The Dangers of Logical
Replication and a Practical
Solution

Jose M. Faleiro
Microsoft Research

with
Daniel Abadi, Jeff Helt, Wyatt Lloyd, Abhinav Sharma

Log-shipping replication

Replication lag

Primary-backup parallelism gap
Cannot reuse primary’s concurrent execution mechanisms
Multi-threading, synchronization

Weak isolation
Backup must be serial-equivalent

Transaction scheduling

Why now?
Before: Parallelism gap hidden behind I/O bottleneck
Multi-threading used to mask over I/O latency on primary

Backups: Read-ahead into the log to prefetch pages

I/O bottleneck is less relevant today
Servers equipped with increasingly large DRAM
Larger portion of working set can fit in memory

Lower bufferpool miss penalty
Servers equipped with SSDs
100x lower latency than HDDs

Increasing hardware parallelism with multi-cores

Replication lag in the wild
Github
“Maintaining low replication lag is challenging”
Investment in monitoring and throttling (freno)

Booking.com
Reported cases where backups lagged by 90 minutes

VividCortex
“… suffering some serious delays. The worst was behind by at least 16 hours”

GitLab incident
19:00 UTC – GitLab experiences increase in database load

23:00 UTC – Replication process experiences a serious
failure
Primary drops log records needed for replication

23:30 UTC – Primary data is partially wiped out
Attempt to restore backup from checkpoint
Admins try wipe out backup, but wipe out primary instead

Addressing replication lag in MySQL at
Facebook
Published work on deterministic execution for multi-cores
… but I wanted a compelling real-world use case

Log shipping-based replication seemed like a perfect fit
Parallelize the execution of totally ordered log records

Talked to lots of real-world practitioners
Mark Callaghan pointed me to relevant folks at Facebook
Replication mechanism used fairly widely in production

Requirements
Backups must use at least as much parallelism as
primaries
Robust to innovations in concurrency control
Robust to weak isolation

Backups must provide snapshot isolation for read
requests
Reads must observe complete log prefix

Primer on MySQL replication
Single threaded log application

Log records are logical
Transaction statements
Insert, update, delete
Primary keys always specified

MyRocks RocksDB

Transaction
management

Storage
engine

Parallelization strategy: Single threaded
shards
Soft partition DB
Route log records to appropriate partitions

Log record could span many shards

Issues with single threaded shards
Each write must be wrapped in its own transaction
Extra overhead to begin and commit transactions (compared to primary)

Restrict each log record to a single write on primary
Adds overhead on primary
Not general enough, breaks compatibility

Unpack log record on dispatcher thread
Additional overhead on a centralized component
Memory management overhead

Dispatcher thread performance

 0 K

50 K

100 K

150 K

200 K

 1 2 4 8 16 32 64 128 256

T
h
ro

u
g
h
p
u
t
(i
n
se

rt
s/

se
c)

Number of threads

Dispatcher thread
Backup offline

Primary

Parallelization strategy: Short-duration locks
Assign each transaction to worker threads
1:1 correspondence between primary and backup transactions
But avoid long-duration locks

Dispatcher determines schedules based on conflicts
Locks released after statement finishes executing

Short-duration locks example
T1

T2

Dispatcher correctly determines
dependencies prior to execution

No deadlocks
No logical aborts

Issues with short-duration locks
Chain of uncommitted writes on each record
In addition to being uncommitted, each needs to be visible
Need help from storage engine

Compromise: Short-duration at replication subsystem, but long-duration within
MyRocks

MyRocks RocksDB

Transaction
management

Storage
engine

Replication
subsystem

Requirements
Backups must use at least as much parallelism as
primaries
Robust to innovations in concurrency control
Robust to weak isolation

Backups must provide snapshot isolation for read
requests
Reads must observe complete log prefix

Snapshot isolation for reads
Snapshot is a complete prefix of transaction log

No guarantee that committed transactions are complete
prefix
Need a mechanism for correctly capturing snapshots

Snapshot strategy: Low-watermarks
No guarantee that committed transactions are complete
prefix
But a subset of committed transactions forms a complete prefix

Maintain a low-watermark corresponding to this subset
Serve reads off this low-watermark

Low-watermark

Issues with low-watermarks
Replication subsystem can’t pick timestamps
RocksDB does, and they are assigned when transactions commit

Backup timestamps don’t match those on the primary
Transactions might commit in different order

MyRocks RocksDB

Transaction
management

Storage
engine

Replication
subsystem

Input log
(primary’s output) Commit order on backup

Snapshot strategy: Asynchronous
checkpointing
Pick a future point in the log at which to checkpoint
Allow transactions before that point to commit
Allow transactions after that point to execute, but not commit

Current
checkpoint

Future
checkpoint
Current
checkpoint

We implemented asynchronous checkpointing
(with some difficulty)
Transactions not in the checkpoint execute but don’t
commit
Implicitly assumes that cost of execution >> cost of commit
This was not always true of RocksDB… but thankfully true when we got to work

Issue with uncommitted chains of writes

MyRocks RocksDB

Transaction
management

Storage
engine

Replication
subsystem

Performance

Point inserts

 0 K

50 K

100 K

150 K

200 K

 0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(i
n

se
rt

s/
se

c)

Time elapsed (seconds)

Slave
Master

 0 K

 2 K

 4 K

 6 K

 8 K

10 K

 0 20 40 60 80 100 120

C
o

m
m

its
/s

e
c

Time elapsed (seconds)

Backup
Primary

TPC-C NewOrder

 0 K

 2 K

 4 K

 6 K

 8 K

10 K

 0 20 40 60 80 100 120

C
o

m
m

its
/s

e
c

Time elapsed (seconds)

Backup
Primary

Lessons / Random stuff
Replication must be a first-class citizen of any design
… if not, you’re entering a world of pain

Building modular high-performance systems is very tricky
But worth it, code is easier to work with and evolve
Doesn’t work with InnoDB due to implicit gap locking, which can deadlock

Higher levels of stack now complain that replication is too
fast

Conclusions
Replication lag can be a serious emergent issue
Impact on operations, availability, user experience

Parallel replication subsystem for MySQL
Parallel log playback + snapshot isolation reads
Deployed at Facebook

Be prepared for lag despite best efforts
Lag detection mechanisms
Log archiving

Q&A

jmf@microsoft.com
Github: facebook/mysql-5.6

