Apache Kudu: Fast

Analytics on Fast Data
Adar Lieber-Dembo

Why should you care?

Kudu is a scale up, scale out, columnar, open source storage engine

Exploits modern hardware (e.g. NVMe, gobs of RAM)

Sharded share-nothing design

Column-oriented disk layout: efficient storage and fast analytical scans
Structured schema: familiarity and ergonomics

Supports many query engines, such as Apache Impala and Apache Spark
Code licensed under ASL 2.0 and active project community

Fast Analytics on Fast Data

For data sets that are:

Constantly growing and you want to query the latest data ASAP
Updated

Used in both analytical scans and point lookups
Structured and have evolving schemas

Kudu provides:

e |Immediate availability (for scans) of rows as they are written
e Seamless updates and deletes

Schema

e Finite number of columns
e Each column has a type, encoding, compression, default value, and nullability

e Primary key is a subset of all columns
o Defines row uniqueness
o Defines sort order of rows on disk
o Basis for clustered index: profound effect on performance
e Partitioning: range, hash, or both
o Each level defines its own partition key (must be a subset of primary key columns)
o Range partitions can be added or removed; hash buckets are fixed (for now!)

Clients

e Clients write data into Kudu

o Data organized into rows
o Each row operation may be one of INSERT, UPDATE, DELETE, or UPSERT

o Servers enforce primary key uniqueness/existence

e Clients scan data out of Kudu
o Scan may include projection of columns
o Scan may include predicates on arbitrary columns

e Speaking of predicates...
o Predicated on a prefix of the primary key? Will use clustered index
o What about on a prefix of a partition key? Entire partitions can be pruned
o Predicates are pushed down to per-column scanners
o Column values are encoded so we can evaluate predicates without decoding data

Replication

e Partitions are logically replicated via Raft consensus protocol
e \Writes must be sent to leader
o Committed when on majority of WALs

e Scans may go to any node
o) No quorum necessary for scan

e Table/partition/schema catalog is a Raft-replicated single partition

Things | think are cool

HybridTime (aka Hybrid Logical Clocks)

e Each timestamp has a physical and logical component
o Both may only move forwards

e HT timestamp assigned to each write

e Timestamps exchanged between servers and between clients and servers
o Keeps time disparities low across the cluster

e Fully linearizable in the absence of hidden channels
o If hidden channels exist, must propagate timestamps across them for linearizability

Ergonomic alternative to Lamport Clocks (i.e. can scan at a particular
point-in-physical-time which is also a HT timestamp)

Things | think are cool

MVCC

e Implemented via full fidelity history retention
e Every operation has a HT timestamp
o Maintained faithfully during all flushes and compactions

e All scans have snapshot isolation consistency
o Never read “dirty” data

e May also scan between two points-in-time to produce “difference”
o Used in incremental backups

Things | think are cool

Storage is a veritable fractal of LSM trees

e One LSM tree for “base” data

o Large in-memory store flushes to new disk components each with min/max PK bounds
o Disk components periodically compacted together to reduce PK overlap
o Compaction is budgeted and light-weight to avoid hogging CPU/IO for a long time

e An LSM tree for mutations in each disk component
o Mutations bypass main in-memory store in favor of per-disk-component memory store
o Flushed into their own disk components, periodically compacted together
o Periodically compacted into base data to reduce number of mutations applied in a scan
o Post-compaction, mutations are kept in an inverted state to enable “time travel” scans

e Separating base data and mutations: pure INSERT write performance can be
comparable to that of an immutable storage engine

Things | think are cool

Disk components

e Each one has min/max PK bounds (stored in-memory)
o Builds shard-level interval tree to prune components during scan and when checking for
existence of a PK during write
e Each one has a bloom filter (paged from disk)
o Also used to prune components when checking for existence of a PK during write
e Each one has a PK B-tree index (paged from disk)
o Great for point lookup “scans”
e Mutations based on Positional Delta Tree design

o Mutation key is {row ordinal, timestamp} rather than full PK
o Much cheaper to apply on top of base data at scan time

Things | think are cool

Memory stores

e Based on MassTree design
o No record removal; deleted records removed at flush time
o No in-place record updates; atomic CAS to append mutations to a per-record linked list
m Taken together: MVCC on records
o Leaf nodes are linked via next pointer (as in B+-tree): improved sequential scan performance
o No full “trie of trees”: less concerned about extremely high random access throughput

e SSEZ2 memory prefetch instructions to prefetch one leaf node ahead of scan
e JlIT-compile record projection operations using LLVM

Things | think are cool

New (maybe?) merge algorithm

e Kudu ordered scans

o Input: N lists of rows sorted by PK, one from each component
o Output: one mega list of rows sorted by PK

e New algorithm improves upon traditional heap-based merge
o Minimizes size of heap (and thus heap motion) using state tracked in two additional heaps

e Can be used in compactions in the future
o Usable in any domain with limited “peek ahead” of list elements

More information

http://kudu.apache.ora/

http://github.com/apache/kudu

http://kudu.apache.ora/kudu.pdf
http://users.ece.utexas.edu/~gara/pdslab/david/hybrid-time-tech-report-01.pdf
https://getkudu-slack.herokuapp.com/

https://kudu.apache.org/faq.html
http://github.com/apache/kudu
https://kudu.apache.org/kudu.pdf
http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf
https://getkudu-slack.herokuapp.com/

