
Apache Kudu: Fast 
Analytics on Fast Data

Adar Lieber-Dembo



Why should you care?
Kudu is a scale up, scale out, columnar, open source storage engine

● Exploits modern hardware (e.g. NVMe, gobs of RAM)
● Sharded share-nothing design
● Column-oriented disk layout: efficient storage and fast analytical scans
● Structured schema: familiarity and ergonomics
● Supports many query engines, such as Apache Impala and Apache Spark
● Code licensed under ASL 2.0 and active project community



Fast Analytics on Fast Data
For data sets that are:

● Constantly growing and you want to query the latest data ASAP
● Updated
● Used in both analytical scans and point lookups
● Structured and have evolving schemas 

Kudu provides:

● Immediate availability (for scans) of rows as they are written
● Seamless updates and deletes



Schema
● Finite number of columns
● Each column has a type, encoding, compression, default value, and nullability
● Primary key is a subset of all columns

○ Defines row uniqueness
○ Defines sort order of rows on disk
○ Basis for clustered index: profound effect on performance

● Partitioning: range, hash, or both
○ Each level defines its own partition key (must be a subset of primary key columns)
○ Range partitions can be added or removed; hash buckets are fixed (for now!)



Clients
● Clients write data into Kudu

○ Data organized into rows
○ Each row operation may be one of INSERT, UPDATE, DELETE, or UPSERT
○ Servers enforce primary key uniqueness/existence

● Clients scan data out of Kudu
○ Scan may include projection of columns
○ Scan may include predicates on arbitrary columns

● Speaking of predicates...
○ Predicated on a prefix of the primary key? Will use clustered index
○ What about on a prefix of a partition key? Entire partitions can be pruned
○ Predicates are pushed down to per-column scanners
○ Column values are encoded so we can evaluate predicates without decoding data



● Partitions are logically replicated via Raft consensus protocol
● Writes must be sent to leader

○ Committed when on majority of WALs

● Scans may go to any node
○ No quorum necessary for scan

● Table/partition/schema catalog is a Raft-replicated single partition

Replication



Things I think are cool
HybridTime (aka Hybrid Logical Clocks)

● Each timestamp has a physical and logical component
○ Both may only move forwards

● HT timestamp assigned to each write
● Timestamps exchanged between servers and between clients and servers

○ Keeps time disparities low across the cluster

● Fully linearizable in the absence of hidden channels
○ If hidden channels exist, must propagate timestamps across them for linearizability

Ergonomic alternative to Lamport Clocks (i.e. can scan at a particular 
point-in-physical-time which is also a HT timestamp)



Things I think are cool
MVCC

● Implemented via full fidelity history retention
● Every operation has a HT timestamp

○ Maintained faithfully during all flushes and compactions

● All scans have snapshot isolation consistency
○ Never read “dirty” data

● May also scan between two points-in-time to produce “difference”
○ Used in incremental backups



Things I think are cool
Storage is a veritable fractal of LSM trees

● One LSM tree for “base” data
○ Large in-memory store flushes to new disk components each with min/max PK bounds
○ Disk components periodically compacted together to reduce PK overlap
○ Compaction is budgeted and light-weight to avoid hogging CPU/IO for a long time

● An LSM tree for mutations in each disk component
○ Mutations bypass main in-memory store in favor of per-disk-component memory store
○ Flushed into their own disk components, periodically compacted together
○ Periodically compacted into base data to reduce number of mutations applied in a scan
○ Post-compaction, mutations are kept in an inverted state to enable “time travel” scans

● Separating base data and mutations: pure INSERT write performance can be 
comparable to that of an immutable storage engine



Things I think are cool
Disk components

● Each one has min/max PK bounds (stored in-memory)
○ Builds shard-level interval tree to prune components during scan and when checking for 

existence of a PK during write

● Each one has a bloom filter (paged from disk)
○ Also used to prune components when checking for existence of a PK during write

● Each one has a PK B-tree index (paged from disk)
○ Great for point lookup “scans”

● Mutations based on Positional Delta Tree design
○ Mutation key is {row ordinal, timestamp} rather than full PK
○ Much cheaper to apply on top of base data at scan time



Things I think are cool
Memory stores

● Based on MassTree design
○ No record removal; deleted records removed at flush time
○ No in-place record updates; atomic CAS to append mutations to a per-record linked list

■ Taken together: MVCC on records
○ Leaf nodes are linked via next pointer (as in B+-tree): improved sequential scan performance
○ No full “trie of trees”: less concerned about extremely high random access throughput

● SSE2 memory prefetch instructions to prefetch one leaf node ahead of scan
● JIT-compile record projection operations using LLVM



New (maybe?) merge algorithm

● Kudu ordered scans
○ Input: N lists of rows sorted by PK, one from each component
○ Output: one mega list of rows sorted by PK 

● New algorithm improves upon traditional heap-based merge
○ Minimizes size of heap (and thus heap motion) using state tracked in two additional heaps

● Can be used in compactions in the future
○ Usable in any domain with limited “peek ahead” of list elements

Things I think are cool



More information
● http://kudu.apache.org/
● http://github.com/apache/kudu
● http://kudu.apache.org/kudu.pdf
● http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf
● https://getkudu-slack.herokuapp.com/

https://kudu.apache.org/faq.html
http://github.com/apache/kudu
https://kudu.apache.org/kudu.pdf
http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf
https://getkudu-slack.herokuapp.com/

