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Thumbnail

Serverless computing in 2014
AWS announced Lambda Function as a Service (FaaS) in 2014, 
others clouds followed quickly
Write code, upload it to the cloud, run at any scale
Successful for web APIs and event processing, limited in 
stateful applications
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Defining characteristics of serverless abstractions

Hiding the servers and the complexity of programming them

Consumption-based costs and no charge for idle resources

Excellent autoscaling so resources match demand closely
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Understanding serverless computing’s impact

Job Serverful Cloud Serverless Cloud

Infrastructure 
Administration Outsourced job Outsourced job

System 
Administration Simplified job Outsourced job

Software 
Development Little change Simplified job

On-premise Serverful cloud Serverless cloud
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Serverless as next phase 
of cloud computing

Serverless abstractions offer
Simplified programming
Outsourced operations
Improved resource utilization
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Object Storage
AWS S3

Azure Blobs
Google Cloud Storage

Serverless is much more than FaaS

Queue Service
AWS SQS

Google Cloud Pub/Sub

Function as a Service
AWS Lambda

Google Cloud Functions
Google Cloud Run
Azure Functions

Big Data Processing
Google Cloud Dataflow

AWS Glue
AWS Athena
AWS Redshift

Key-Value Store
AWS DynamoDB
Azure CosmosDB

Google Cloud Datastore

Mobile back end
Google Firebase
AWS AppSync

Google App Engine
AWS Serverless Aurora



Fertile ground for research
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Source: dblp computer science bibliography.

https://dblp.org/
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Limitations of FaaS

Limited runtime

Ephemeral state No specialized 
hardware, e.g., GPU

No inbound network 
connections



Plenty of complementary stateful serverless services

Object Storage
• AWS S3
• Azure Blobs
• Google Cloud Storage

Key-Value Store
• AWS DynamoDB
• Azure CosmosDB
• Google Cloud Datastore
• Anna KVS (Berkeley)

Others
• AWS Aurora Serverless
• Google Firebase



Combine with FaaS to build applications

Object 
Storage

Key-Value 
Store

λ λ

Etc.

Compute:
isolated & ephemeral state

Storage:
shared & durable state



Allows independent scaling

Object 
Storage

Key-Value 
Store

λ λ λ λ λ

Etc. Etc. Etc.



How happy are we?



How happy are we?





Two main problems

Latency API



Can I please have something like 
local disk, but for the cloud?
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File systems let us run so much software

Data analysis with Pandas
Machine learning with TensorFlow
Software builds with Make
Search indexes with Sphinx
Image rendering with Radiance
Databases with SQLite
Web serving with Nginx
Email with Postfix



21
©2019 RISELab

Objections

It won’t scale
Need a simpler data model (key-value store, immutable objects)
Need a weaker consistency model (eventual consistency)
Performance and reliability will suffer otherwise

You don’t need it
You should be rewriting your software for the cloud anyhow
Why not just use use a key-value store?
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How does this make me feel?
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Introducing the Cloud Function File System (CFFS)

POSIX semantics, including strong consistency

Local caches for local disk performance

Works under autoscaling, extreme elasticity, and FaaS limitations

Implemented as a transaction system
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What is special about the FaaS environment?

Function invocations have well defined beginning and end
At-least-once execution—expects idempotent code
Constrained execution model

Clients frozen in between invocations

No inbound network connections

No root access
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CFFS Architecture

λ λ λλλλ

Back end transactional system

CFFS CFFS CFFS CFFS CFFS CFFS

CFFS
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FaaS instance caching
“Function as a Service” suggests statelessness, but most 
implementations reuse instances and preserve their state
Setup of sandboxed environment takes time

Loads selected runtime (e.g., JavaScript, Python, C#, etc.)
Configures network endpoint, IAM privileges
Loads user code
Runs user initialization

Caching is key to amortizing instance setup
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Cloud Function File System (CFFS)

Back end transactional system

Cache

Txn Buffer

Application
— POSIX API —

Our 
emphasis

Cache Logs Txn Commit
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Core API implemented in CFFS
open New descriptor (handle) for file or 

directory
close Close descriptor
write / pwrite Write / positioned write
read / pread Read / positioned read
stat Get size, ownership, access, 

permissions, last modified
seek Set descriptor position
dup / dup2 Copy descriptor
truncate Set file size
flock Byte range lock and unlock

mkdir Create directory
rename Rename file / directory
unlink Delete file / directory
chmod Set access permissions
chown Set ownership
utimes Update modified / accessed 

timestamps
clock_gettime Get current time
chdir Set working directory
getcwd Get working directory
begin Start transaction
commit / abort End transaction



POSIX guarantees - language from the spec

• Writes can be serialized with respect to other reads and 
writes.

• If a read() of file data can be proven (by any means) to 
occur after a write() of the data, it must reflect that write()…

• A similar requirement applies to multiple write operations to 
the same file position…

• This requirement is particularly significant for networked 
file systems, where some caching schemes violate 
these semantics.

https://pubs.opengroup.org/onlinepubs/9699919799/

“ ”

https://pubs.opengroup.org/onlinepubs/9699919799/
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POSIX guarantees in database terms

Atomic operations
Each operation (at the API level) is observed entirely or not at all
Some violations in practice

Consistency model
Spec references time, technically requires strict consistency (shared global clock)
Actually implemented as sequential consistency (global order exists, consistent with 
order at each processor)
We use serializability to provide isolation and atomicity at function granularity

Open question: what guarantees do applications actually rely on?
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Implementation highlights

Choice of transaction mechanism not fundamental
Implemented timestamp-order serilizable
Optimistic protocols can be a good fit—FaaS side effects must be idempotent
State-of-the-art protocols promise lower abort rates, more effective local caches  (e.g., 
Yu, et al., VLDB 2018)

Cache updates through on-demand filtererd log shipping
Check for updates when function starts execution
Eviction messages help back-end track client cache content
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CFFS in context: Transactional file systems

QuickSilver distributed system – IBM, 1991
Very close in spirit
No FaaS
No caching

Inversion File System – Berkeley, 1993
Built on top of PostgreSQL
Access through custom library

Transactional NTFS (TxF) – Microsoft, 2006
Shipping in Windows
Deprecated on account of complexity

There are many non-transactional shared & distributed file systems
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CFFS in context: Shared file systems

Must choose between consistency and latency
Eventual consistency
Delegation/lock-based caching
No caching

Lustre
GPFS (IBM)
GlusterFS (RedHat / IBM)
GFS (Google File System)
MooseFS
LizardFS
BeeGFS

HDFS
GFS (Google)
Ceph (IBM)
MapR-FS
Alluxio

NFS
SMB

zFS

Client-serverBig data

Mainframe

HPC
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Sample workload call frequencies
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Caching benefits (TPC-C / SQLite)
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Scaling in AWS Lambda
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Returning to objections

It won’t scale—contention risks
File length: must be checked on every read
Stat command: mainly used use it to check the file length or 
permissions, but also returns modification time and access time

You don’t need it
I think it will be pretty useful

Challenges here, optimistic they will be overcome



How happy are we?
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CFFS Summary

Transactions are a natural fit for FaaS
BEGIN and END from function context

At-least-once execution goes well with optimistic transactions

On-demand filtered log shipping allows asynchronous cache updates

Overcomes limitations of FaaS & traditional shared file systems
Allows caching for lower latency, preserving consistency

Highly scalable, especially with snapshot reads

POSIX API enables vast range of tools and libraries


