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Towards Stateful 

Serverless



“We predict that Serverless Computing will grow 
to dominate the future of Cloud Computing.”

- Berkeley CS Department

Cloud computing simplified: a Berkeley view on serverless computing
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good use-cases
For FaaS?

1. Embarrassingly parallel processing tasks—invoked on demand & intermittently, 
examples include: image processing, object recognition, log analysis 

2. Low traffic applications—enterprise IT services, and spiky workloads 
3. Stateless web applications—serving static content form S3 (or similar) 
4. Orchestration functions—integration/coordination of calls to third-party services 
5. Composing chains of functions—stateless workflow management, connected via 
data dependencies 

6. Job scheduling—CRON jobs, triggers, etc.

Use-cases where throughput is key rather than low latency  
and requests can be completed in a short time window
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General-Purpose Applications



1. Functions are stateless, ephemeral, short-lived:  
expensive to lose computational context & rehydrate 

2. Durable state is always “somewhere else” 
3. No co-location of state and processing  
4. No direct addressability—all communication over external storage 
5. Limited options for managing & coordinating distributed state 
6. Limited options for modelling data consistency guarantees

FAAS: Hard to build  
General-Purpose Applications





State



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching 

• Low-latency serving of dynamic in-memory models 
E.g. Serving of Machine Learning Models 

• Real-time stream processing 
E.g. Recommendation, Anomaly Detection, Prediction Serving 

• Distributed resilient transactional workflows 
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions 

• Shared collaborative workspaces 
E.g. Collaborative Document Editing, Blackboards, Chat Rooms 

• Leader election, counting, voting 
…and other distributed systems patterns/protocols for coordination

We Need Serverless Support For...
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1. Stateful long-lived addressable virtual components 
Actors

2. Options for distributed coordination and communication patterns 
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale 
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions 
Physical co-location of state and processing, sharding, and sticky routing

5. Predictable performance, latency, and throughput 
In startup time, communication/coordination, and storage of data

6. Ways of managing end-to-end guarantees and correctness

Technical Requirements
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Message In User Function

Deployment
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Message Out

Not Serverless 
In An Ideal World



Unconstrained 
database access 
Makes it hard to 

Automate 
operations



Enter 
Stateful 
Serverless
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1. Embrace State—Don’t ignore, hide, or delegate it 
Data locality matters. Faster insight into data is a competitive advantage.

2. Embrace Failure—Unavoidable. Don’t prevent. Manage. 
Bulkhead and Contain. Signal and Die. Supervise and Manage.

3. Embrace Uncertainty—Manage it in the application layer 
End-to-end correctness/stability requires app working in concert w/ infra.

4. Avoid Needless Consistency 
Not all data have need the same guarantees. Start with zero, add as needed.

5. Avoid Needless Coordination and Communication 
Silence is Golden. Favour Eventual Consistency, CALM, CRDTs, ACID 2.0.

6. Avoid Coupling in Time and Space 
Go Async. Don’t Block. Location Transparency. Guess/Apologize/Compensate.G
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Let Us Use Better Models 
For Distributed State

Event  
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ACID 2.0
Associative 
Batch-insensitive  

(grouping doesn't matter) 
a+(b+c)=(a+b)+c

Commutative 
Order-insensitive  

(order doesn't matter) 
a+b=b+a 

Idempotent 
Retransmission-insensitive  
(duplication does not matter) 

a+a=a
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CRDT
ACID 2.0 
Strong Eventual Consistency 
Replicated & Decentralized 
Always Converge Correctly 
Monotonic Merge Function 
Highly Available & Scalable 
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Data types 
Counters 
Registers 

Sets 
Maps 

Graphs 
(that all compose)

CRDT
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Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types



Deployment

Serverless 

CRDTs



User Function/entity

Deployment

Serverless 

CRDTs



User Function/entity

Deployment

States/Deltas IN

Serverless 

CRDTs



Message In

User Function/entity

Deployment

States/Deltas IN

Serverless 

CRDTs



Message In

User Function/entity

Deployment

Message Out

States/Deltas IN

Serverless 

CRDTs



Message In

User Function/entity

Deployment

Message Out

States/Deltas IN States/deltas OUT

Serverless 

CRDTs



Deployment

Serverless 

CRUD



User Function/entity

Deployment

Serverless 

CRUD



User Function/entity

Deployment

Snapshot In 
(By Entity KEy)

Serverless 

CRUD



Message In

User Function/entity

Deployment

Snapshot In 
(By Entity KEy)

Serverless 

CRUD



Message In

User Function/entity

Deployment

Message Out

Snapshot In 
(By Entity KEy)

Serverless 

CRUD



Message In

User Function/entity

Deployment

Message Out

Snapshot In 
(By Entity KEy)

Snapshot out 
(By Entity Key)

Serverless 

CRUD



Introducing



What Is CloudState?
https://cloudstate.io



Two things:

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works  

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works  
• PolyState: Powerful state model—support for Event Sourcing, CRDTs, Key Value

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works  
• PolyState: Powerful state model—support for Event Sourcing, CRDTs, Key Value
• PolyDB: Supporting SQL, NoSQL, NewSQL, and in-memory replication

What Is CloudState?
https://cloudstate.io



Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works  
• PolyState: Powerful state model—support for Event Sourcing, CRDTs, Key Value
• PolyDB: Supporting SQL, NoSQL, NewSQL, and in-memory replication
• Open Source leveraging Akka, gRPC, Knative, GraalVM, running on Kubernetes

What Is CloudState?
https://cloudstate.io
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1. The promise of Serverless is revolutionary and will 
grow to dominate the future of Cloud

2. FaaS is a great first step, but let’s not stop here
3. Serverless 2.0 needs a runtime & programming 

model for general-purpose application development
4. We can’t ignore/delegate the hardest thing: State
5. We think that Cloudstate shows the way

In Summary


