//ﬂ

N\
N

Jonas Boner

@jboner

“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

Cloud computing simplified: a Berkeley view on serverless computing

VISIONARY
THE WAY

FaaS = Function-as-a-Service

VISIONARY

THE WAY
FIRST STEP

FaaS = Function-as-a-Service

SERVERLESS FAAS

USE-GASES

FAAS

USE-GASES

FAAS

throughput is key
completed in a short time

USE-GASES

FAAS

throughput is key
completed in a short time

Embarrassingly parallel processing tasks

Low traffic applications
Stateless web applications
Orchestration functions
Composing chains of functions

Job scheduling

FAAS: HARD TO BUILD

FAAS: HARD T0 BUILD

expensive to lose computational context

Durable state “somewhere else”

No co-location

No direct addressability
managing & coordinating distributed state
modelling data consistency guarantees

Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models

Real-time stream processing

Distributed resilient transactional workflows

Shared collaborative workspaces

Leader election, counting, voting

N
\\S

Stateful long-lived addressable virtual components

Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns

Stateful long-lived addressable virtual components
Options for distributed coordination and communication patterns

Options for managing distributed state reliably at scale

Stateful long-lived addressable virtual components
Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale

Intelligent adaptive placement of stateful functions

Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale
Intelligent adaptive placement of stateful functions

Predictable performance, latency, and throughput

Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale
Intelligent adaptive placement of stateful functions

Predictable performance, latency, and throughput

Ways of managing end-to-end guarantees and correctness

DEPLOYMENT

USER FUNCTION

DEPLOYMENT

USER FUNCTION

DEPLOYMENT

USER FUNCTION MESSAGE OUT

T
—
Ll
—
S
S
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

T
—
Ll
—
S
S
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

DATABASE

MESSAGE OUT

DEPLOYMENT

USER FUNCTION

MAKES IT HARD T0

AUTOMATE
OPERATIONS

1

\
N
\,

Embrace State—Don't ignore, hide, or delegate It

Embrace State—Don't ignore, hide, or delegate It

Embrace Failure—Unavoidable. Don't prevent. Manage.

Embrace State—Don't ignore, hide, or delegate It
Embrace Failure—Unavoidable. Don't prevent. Manage.

Embrace Uncertainty—Manage it in the application layer

Embrace State—Don't ignore, hide, or delegate It
Embrace Failure—Unavoidable. Don't prevent. Manage.

Embrace Uncertainty—Manage it in the application layer

Avoid Needless Consistency

Embrace State—Don't ignore, hide, or delegate It
Embrace Failure—Unavoidable. Don't prevent. Manage.

Embrace Uncertainty—Manage it in the application layer

Avoid Needless Consistency

Avoid Needless Coordination and Communication

Embrace State—Don't ignore, hide, or delegate It
Embrace Failure—Unavoidable. Don't prevent. Manage.

Embrace Uncertainty—Manage it in the application layer

Avoid Needless Consistency
Avoid Needless Coordination and Communication

Avoid Coupling in Time and Space

DEPLOYMENT

[—
-
o
L]
(=)
=T
(7]
w
[
—

USER FUNCTION/ENTITY

DEPLOYMENT

[—
-
o
L]
(=)
=T
(7]
w
[
—

USER FUNCTION/ENTITY

T
—
Ll
—
=
(=]
L
.
Ll
=

MESSAGE OUT

USER FUNCTION/ENTITY

STATE OUT

S

\

N

N DN

A FEW BATTLE-TESTED, YET CONSTRAINED, MODELS ARE

/, \

N\ //

\
N\,

Event
sourcing

W\

N\ //

\
A\

CRDTs

Event
sourcing

W\

N //

\
_

Key

Value

CRDTs

Event
sourcing

& ¢

HAPPY PATH

& ¢

HAPPY PATH

& ¢

HAPPY PATH

HAPPY PATH

HAPPY PATH

EVENT

HAPPY PATH

-
—
L
—
L

HAPPY PATH

& ¢

HAPPY PATH

SAD PATH, RECOVER FROM FAILURE

SAD PATH, RECOVER FROM FAILURE

(7]
o
P
Ll
—]
Ll
—
=T
— |
(=
Ll
o

SAD PATH, RECOVER FROM FAILURE

REPLAY EVENTS

SAD PATH, RECOVER FROM FAILURE

T
—
Ll
—
=
S
L
(=
Ll
=

7
/.:
i p

T
—
Ll
—
=
S
L
.
Ll
=

USER FUNCTION/ENTITY

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

EVENT LOG IN

DEPLOYMENT

USER FUNCTION/ENTITY

EVENT LOG IN

[—
-
o
=
(=
L
(= =

DEPLOYMENT
USER FUNCTION/ENTITY

WA

EVENT LOG IN

DEPLOYMENT

[—
-
o
=
(=
L
(= =

USER FUNCTION/ENTITY

EVENTS OUT

EVENT LOG IN

ACID

Batch-insensitive
(grouping doesn't matter)

2.0

Batch-insensitive Order-insensitive
(grouping doesn't matter) (order doesn't matter)

2.0

Batch-insensitive Order-insensitive Retransmission-insensitive
(grouping doesn't matter) (order doesn't matter) (duplication does not matter)

CONFLICT-FREE REPLICATED DATA TYPES

CONFLICT-FREE REPLICATED DATA TYPES

GRDT

CONFLICT-FREE REPLICATED DATA TYPES

c R DT DATA TYPES

AN
R W

\
\

W

N\

\

T
—
Ll
—
=
S
L
(=
Ll
=

T
—
Ll
—
=
S
L
.
Ll
=

USER FUNCTION/ENTITY

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

STATES/DELTAS IN

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

STATES/DELTAS IN

MESSAGE OUT

]
=
[—
=
[—
= =
m S
[—
m (30
o =
(=] (e
o
LLl
N
—

STATES/DELTAS IN

MESSAGE OUT
STATES/DELTAS OUT

]
=
[—
=
[—
= =
m S
[—
m (30
o =
(=] (e
o
LLl
N
—

STATES/DELTAS IN

\

T
—
Ll
—
S
D
-
(=W
Ll
(e |

)
=
—
=
[—
= -
m S
T—
m (30
o =
(=] (e
o
LLl
N
—

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

SNAPSHOT IN
(BY ENTITY KEY)

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

SNAPSHOT IN
(BY ENTITY KEY)

DEPLOYMENT

[—
-
o
L]
(=)
=T
(7]
w
[
—

USER FUNCTION/ENTITY

SNAPSHOT IN
(BY ENTITY KEY)

T
—
Ll
—
=
(=]
L
.
Ll
=

MESSAGE OUT

USER FUNCTION/ENTITY

SNAPSHOT OUT

SNAPSHOT IN
(BY ENTITY KEY)

(BY ENTITY KEY)

cloudstate

CLOUDSTATE

https://cloudstate.io

CLOUDSTATE

https://cloudstate.io

Two things:

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

Highlights:

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

Highlights:
Polyglot: JavaScript, Java, Go Python, .NET, Swift, Scala

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

Highlights:
Polyglot: JavaScript, Java, Go Python, .NET, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

Highlights:
Polyglot: JavaScript, Java, Go Python, .NET, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value

PolyDB: SOL, NoSQL, NewSQL

CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

Highlights:
Polyglot: JavaScript, Java, Go Python, .NET, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value
PolyDB: SAL, NoSQL, NewSQOL

Open Source Akka, gRPC, Knative, GraalVM, Kubernetes

STATEFUL FUNCTIONS

STATEFUL FUNCTIONS

STATEFUL FUNCTIONS

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

CLOUDSTATE PROXY sioe KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

CLOUDSTATE PROXY sioe KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

CLOUDSTATE PROXY sioe KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

CLOUDSTATE PROXY sioe KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner,...)

AKKA CLUSTER

CLOUDSTATE PROXY

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner....)

AKKA CLUSTER

KUBERNETES POD

' AKKA SIDECAR
‘ AKKA SIDECAR
‘ AKKA SIDECAR

KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner....)

AKKA CLUSTER

AKKA SIDECAR _ KUBERNETES POD
AKKA SIDECAR _ KUBERNETES POD

AKKA SIDECAR _ KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner....)

AKKA CLUSTER

KUBERNETES POD
KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner....)

AKKA CLUSTER

KUBERNETES POD
KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner....)

AKKA CLUSTER

AKKA CLUSTER

AKKA SIDECAR AKKA SIDECAR
AKKA SIDECAR AKKA SIDECAR

Actor-based Distributed Runtime

AKKA SIDECAR AKKA SIDECAR
AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

A AKKA SIDECAR AKKASIDECAR |

Actor-based Distributed Runtime
Dynamo-style Node Ring

AKKA SIDECAR
\» AKKA SIDECAR /

. .
. .
--

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

1 AKKA SIDECAR

Actor-based Distributed Runtime

AKKA SIDECAR Dynamo-style Node Rlng
: Decentralized Masterless P2P

AKKA SIDECAR

AKKA SIDECAR
\» AKKA SIDECAR

\.

. .
. .
--

AKKA CLUSTER

lll
* *

AKKA CLUSTER

Actor-based Distributed Runtime

=
Decentralized Masterless P2P

I I Epidemic Gossiping, Self-healing

AKKA SIDECAR AKKA SIDECAR
\» AKKA SIDECAR /

. .
. .
--

AKKA CLUSTER

lll
* *

AKKA CLUSTER

=
: / \ : Actor-based Distributed Runtime

I I Decentralized Masterless P2P

Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
s el

. .
. .
--

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR AKKA SIDECAR

AKKA SIDECAR AKKA SIDECAR

\» AKKA SIDECAR /

. .
. .
--

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR
\» AKKA SIDECAR /

. .
. .
--

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR
\» AKKA SIDECAR /

4 L 4
L 4 .
lllllllllllllllllllllllllllllllllllll iEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEn®

EVENT LOG

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR

I

AKKA SIDECAR

AKKA SIDECAR

. .
. .
--

EVENT LOG

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR < > AKKA SIDECAR

. .
. .
--

EVENT LOG

Hl/'

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR < > AKKA SIDECAR

. .
. .
--

EVENT LOG

Hl/'

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR < > AKKA SIDECAR

. .
. .
--

EVENT LOG

Hl/'

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR < > AKKA SIDECAR

. .
. .
--

EVENT LOG

Hl/'

Actor-based Distributed Runtime
Dynamo-style Node Ring
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing
State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

https://akka.io

N\

N

The promise of Serverless iIs revolutionary and will
grow to dominate the future of Cloud

The promise of Serverless iIs revolutionary and will
grow to dominate the future of Cloud
Faas Is a great first step, but let's not stop here

The promise of Serverless iIs revolutionary and will
grow to dominate the future of Cloud

Faas Is a great first step, but let's not stop here
Serverless 2.0 needs a runtime & programming
model for general-purpose application development

The promise of Serverless iIs revolutionary and will
grow to dominate the future of Cloud

Faas Is a great first step, but let's not stop here
Serverless 2.0 needs a runtime & programming
model for general-purpose application development
We can't ignore/delegate the hardest thing: State

The promise of Serverless iIs revolutionary and will
grow to dominate the future of Cloud

Faas Is a great first step, but let's not stop here
Serverless 2.0 needs a runtime & programming
model for general-purpose application development
We can't ignore/delegate the hardest thing: State

We think that Cloudstate shows the way

