//ﬂ

N\
N

Jonas Boner

@jboner



“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

Cloud computing simplified: a Berkeley view on serverless computing
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FAAS

throughput is key
completed in a short time

Embarrassingly parallel processing tasks

Low traffic applications
Stateless web applications
Orchestration functions
Composing chains of functions

Job scheduling
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FAAS: HARD T0 BUILD

expensive to lose computational context

Durable state “somewhere else”

No co-location

No direct addressability
managing & coordinating distributed state
modelling data consistency guarantees









Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models

Real-time stream processing

Distributed resilient transactional workflows

Shared collaborative workspaces

Leader election, counting, voting
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Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale
Intelligent adaptive placement of stateful functions

Predictable performance, latency, and throughput

Ways of managing end-to-end guarantees and correctness
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MAKES IT HARD T0

AUTOMATE
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Embrace State—Don't ignore, hide, or delegate It
Embrace Failure—Unavoidable. Don't prevent. Manage.

Embrace Uncertainty—Manage it in the application layer

Avoid Needless Consistency
Avoid Needless Coordination and Communication

Avoid Coupling in Time and Space
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REPLAY EVENTS

SAD PATH, RECOVER FROM FAILURE
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2.0

Batch-insensitive Order-insensitive  Retransmission-insensitive
(grouping doesn't matter) (order doesn't matter) (duplication does not matter)
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CONFLICT-FREE REPLICATED DATA TYPES

c R DT DATA TYPES
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CLOUDSTATE

https://cloudstate.io

Two things:
Standards Project
Reference Implementation

Highlights:
Polyglot: JavaScript, Java, Go  Python, .NET, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value
PolyDB: SAL, NoSQL, NewSQOL

Open Source Akka, gRPC, Knative, GraalVM, Kubernetes
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CLOUDSTATE PROXY sioe KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner,...)
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The promise of Serverless iIs revolutionary and will
grow to dominate the future of Cloud

Faas Is a great first step, but let's not stop here
Serverless 2.0 needs a runtime & programming
model for general-purpose application development
We can't ignore/delegate the hardest thing: State

We think that Cloudstate shows the way



