
Jonas Bonér
@jboner

Beyond FaaS
Towards Stateful

Serverless

“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

- Berkeley CS Department

Cloud computing simplified: a Berkeley view on serverless computing

FaaS

FaaS = Function-as-a-Service

Is visionary
FaaS

FaaS = Function-as-a-Service

Is visionary
Paved the way

FaaS

FaaS = Function-as-a-Service

Is visionary
Paved the way
Just the first step

FaaS

FaaS = Function-as-a-Service

Serverless ≠Faas

good use-cases
For FaaS?

good use-cases
For FaaS?

Use-cases where throughput is key rather than low latency
and requests can be completed in a short time window

good use-cases
For FaaS?

1. Embarrassingly parallel processing tasks—invoked on demand & intermittently,
examples include: image processing, object recognition, log analysis

2. Low traffic applications—enterprise IT services, and spiky workloads
3. Stateless web applications—serving static content form S3 (or similar)
4. Orchestration functions—integration/coordination of calls to third-party services
5. Composing chains of functions—stateless workflow management, connected via
data dependencies

6. Job scheduling—CRON jobs, triggers, etc.

Use-cases where throughput is key rather than low latency
and requests can be completed in a short time window

FAAS: Hard to build
General-Purpose Applications

1. Functions are stateless, ephemeral, short-lived:
expensive to lose computational context & rehydrate

2. Durable state is always “somewhere else”
3. No co-location of state and processing
4. No direct addressability—all communication over external storage
5. Limited options for managing & coordinating distributed state
6. Limited options for modelling data consistency guarantees

FAAS: Hard to build
General-Purpose Applications

State

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models
E.g. Serving of Machine Learning Models

• Real-time stream processing
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

• Shared collaborative workspaces
E.g. Collaborative Document Editing, Blackboards, Chat Rooms

• Leader election, counting, voting
…and other distributed systems patterns/protocols for coordination

We Need Serverless Support For...

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions
Physical co-location of state and processing, sharding, and sticky routing

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions
Physical co-location of state and processing, sharding, and sticky routing

5. Predictable performance, latency, and throughput
In startup time, communication/coordination, and storage of data

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions
Physical co-location of state and processing, sharding, and sticky routing

5. Predictable performance, latency, and throughput
In startup time, communication/coordination, and storage of data

6. Ways of managing end-to-end guarantees and correctness

Technical Requirements

User Function

Deployment

FaaS
Abstracting Over
Communication

Message In User Function

Deployment

FaaS
Abstracting Over
Communication

Message In User Function

Deployment

Message Out

FaaS
Abstracting Over
Communication

Message In User Function

Deployment

Message Out

FaaS With CRUD

Message In User Function

Deployment

Database

Message Out

FaaS With CRUD

Message In User Function

Deployment

Database

Message Out

Not Serverless
In An Ideal World

Unconstrained
database access
Makes it hard to

Automate
operations

Enter
Stateful
Serverless

G
u
id

in
g

P
r
in

c
ip

le
s

1. Embrace State—Don’t ignore, hide, or delegate it
Data locality matters. Faster insight into data is a competitive advantage.

G
u
id

in
g

P
r
in

c
ip

le
s

1. Embrace State—Don’t ignore, hide, or delegate it
Data locality matters. Faster insight into data is a competitive advantage.

2. Embrace Failure—Unavoidable. Don’t prevent. Manage.
Bulkhead and Contain. Signal and Die. Supervise and Manage.

G
u
id

in
g

P
r
in

c
ip

le
s

1. Embrace State—Don’t ignore, hide, or delegate it
Data locality matters. Faster insight into data is a competitive advantage.

2. Embrace Failure—Unavoidable. Don’t prevent. Manage.
Bulkhead and Contain. Signal and Die. Supervise and Manage.

3. Embrace Uncertainty—Manage it in the application layer
End-to-end correctness/stability requires app working in concert w/ infra.

G
u
id

in
g

P
r
in

c
ip

le
s

1. Embrace State—Don’t ignore, hide, or delegate it
Data locality matters. Faster insight into data is a competitive advantage.

2. Embrace Failure—Unavoidable. Don’t prevent. Manage.
Bulkhead and Contain. Signal and Die. Supervise and Manage.

3. Embrace Uncertainty—Manage it in the application layer
End-to-end correctness/stability requires app working in concert w/ infra.

4. Avoid Needless Consistency
Not all data have need the same guarantees. Start with zero, add as needed.

G
u
id

in
g

P
r
in

c
ip

le
s

1. Embrace State—Don’t ignore, hide, or delegate it
Data locality matters. Faster insight into data is a competitive advantage.

2. Embrace Failure—Unavoidable. Don’t prevent. Manage.
Bulkhead and Contain. Signal and Die. Supervise and Manage.

3. Embrace Uncertainty—Manage it in the application layer
End-to-end correctness/stability requires app working in concert w/ infra.

4. Avoid Needless Consistency
Not all data have need the same guarantees. Start with zero, add as needed.

5. Avoid Needless Coordination and Communication
Silence is Golden. Favour Eventual Consistency, CALM, CRDTs, ACID 2.0.

G
u
id

in
g

P
r
in

c
ip

le
s

1. Embrace State—Don’t ignore, hide, or delegate it
Data locality matters. Faster insight into data is a competitive advantage.

2. Embrace Failure—Unavoidable. Don’t prevent. Manage.
Bulkhead and Contain. Signal and Die. Supervise and Manage.

3. Embrace Uncertainty—Manage it in the application layer
End-to-end correctness/stability requires app working in concert w/ infra.

4. Avoid Needless Consistency
Not all data have need the same guarantees. Start with zero, add as needed.

5. Avoid Needless Coordination and Communication
Silence is Golden. Favour Eventual Consistency, CALM, CRDTs, ACID 2.0.

6. Avoid Coupling in Time and Space
Go Async. Don’t Block. Location Transparency. Guess/Apologize/Compensate.G

u
id

in
g

P
r
in

c
ip

le
s

Message In

User Function/Entity

Deployment

Message Out

Stateful Serverless
Abstracting Over State

Message In

User Function/Entity

Deployment

Message Out

Stateful Serverless
Abstracting Over State

State In

Message In

User Function/Entity

Deployment

Message Out

Stateful Serverless
Abstracting Over State

State In State Out

Let Us Use Better Models
For Distributed State

A few battle-tested, Yet Constrained, models are:

Let Us Use Better Models
For Distributed State

A few battle-tested, Yet Constrained, models are:

Let Us Use Better Models
For Distributed State

Event
Sourcing

A few battle-tested, Yet Constrained, models are:

Let Us Use Better Models
For Distributed State

Event
Sourcing CRDTs

A few battle-tested, Yet Constrained, models are:

Let Us Use Better Models
For Distributed State

Event
Sourcing CRDTs Key

Value

Event
Sourced
Services

Happy Path

Event
Sourced
Services

Happy Path

Command

Event
Sourced
Services

Happy Path

Command

Event
Sourced
Services

Happy Path

Command

Event
Sourced
Services

Happy Path

Command

Command

Event
Log

Event

Event
Sourced
Services

Happy Path

Command

Command

Event

Event
Log

Event

Event
Sourced
Services

Happy Path

Command

Command

Event

Event
Log

Event

Event
Sourced
Services

Happy Path

Command
Memory Image

Event
Sourced
Services

Happy Path

Event
Sourced
Services

SAD Path, RECOVER FROM FAILURE

Event
Log

Event
Sourced
Services

SAD Path, RECOVER FROM FAILURE

Event
Log

REPLAY EventS

Event
Sourced
Services

SAD Path, RECOVER FROM FAILURE

Event
Log

REPLAY EventS

Event
Sourced
Services

SAD Path, RECOVER FROM FAILURE

Command

Deployment

Serverless

Event Sourcing

User Function/entity

Deployment

Serverless

Event Sourcing

User Function/entity

Deployment

Event Log In

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Event Log In

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Reply Out

Event Log In

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Reply Out

Event Log In Events OUt

Serverless

Event Sourcing

ACID 2.0

ACID 2.0
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

ACID 2.0
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

Commutative
Order-insensitive

(order doesn't matter)
a+b=b+a

ACID 2.0
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

Commutative
Order-insensitive

(order doesn't matter)
a+b=b+a

Idempotent
Retransmission-insensitive
(duplication does not matter)

a+a=a

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

CRDT
ACID 2.0
Strong Eventual Consistency
Replicated & Decentralized
Always Converge Correctly
Monotonic Merge Function
Highly Available & Scalable

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

Data types
Counters
Registers

Sets
Maps

Graphs
(that all compose)

CRDT
ACID 2.0
Strong Eventual Consistency
Replicated & Decentralized
Always Converge Correctly
Monotonic Merge Function
Highly Available & Scalable

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

Deployment

Serverless

CRDTs

User Function/entity

Deployment

Serverless

CRDTs

User Function/entity

Deployment

States/Deltas IN

Serverless

CRDTs

Message In

User Function/entity

Deployment

States/Deltas IN

Serverless

CRDTs

Message In

User Function/entity

Deployment

Message Out

States/Deltas IN

Serverless

CRDTs

Message In

User Function/entity

Deployment

Message Out

States/Deltas IN States/deltas OUT

Serverless

CRDTs

Deployment

Serverless

CRUD

User Function/entity

Deployment

Serverless

CRUD

User Function/entity

Deployment

Snapshot In
(By Entity KEy)

Serverless

CRUD

Message In

User Function/entity

Deployment

Snapshot In
(By Entity KEy)

Serverless

CRUD

Message In

User Function/entity

Deployment

Message Out

Snapshot In
(By Entity KEy)

Serverless

CRUD

Message In

User Function/entity

Deployment

Message Out

Snapshot In
(By Entity KEy)

Snapshot out
(By Entity Key)

Serverless

CRUD

Introducing

What Is CloudState?
https://cloudstate.io

Two things:

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works
• PolyState: Powerful state model—support for Event Sourcing, CRDTs, Key Value

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works
• PolyState: Powerful state model—support for Event Sourcing, CRDTs, Key Value
• PolyDB: Supporting SQL, NoSQL, NewSQL, and in-memory replication

What Is CloudState?
https://cloudstate.io

Two things:
1. Standards Project—defining a specification, protocol, and TCK
2. Reference Implementation—backend + client APIs in different languages

Highlights:
• Polyglot: Client libs in JavaScript, Java, Go—Python, .NET, Swift, Scala in the works
• PolyState: Powerful state model—support for Event Sourcing, CRDTs, Key Value
• PolyDB: Supporting SQL, NoSQL, NewSQL, and in-memory replication
• Open Source leveraging Akka, gRPC, Knative, GraalVM, running on Kubernetes

What Is CloudState?
https://cloudstate.io

Serving of Stateful Functions

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Serving of Stateful Functions

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate proxy

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Datastore
(Cassandra, Postgres, Spanner,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate proxy

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Datastore
(Cassandra, Postgres, Spanner,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate proxy

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate proxy

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate proxy

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Akka Cluster state management

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)

(Key, State)

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing

(Key, State)

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log

(Key, State)

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

(Key, State)

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

(Key, State)

(Key, State)

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Dynamo-style Node Ring
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing
• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

(Key, State)

(Key, State)

(Key, State)

https://akka.io

In Summary

1. The promise of Serverless is revolutionary and will
grow to dominate the future of Cloud

In Summary

1. The promise of Serverless is revolutionary and will
grow to dominate the future of Cloud

2. FaaS is a great first step, but let’s not stop here

In Summary

1. The promise of Serverless is revolutionary and will
grow to dominate the future of Cloud

2. FaaS is a great first step, but let’s not stop here
3. Serverless 2.0 needs a runtime & programming

model for general-purpose application development

In Summary

1. The promise of Serverless is revolutionary and will
grow to dominate the future of Cloud

2. FaaS is a great first step, but let’s not stop here
3. Serverless 2.0 needs a runtime & programming

model for general-purpose application development
4. We can’t ignore/delegate the hardest thing: State

In Summary

1. The promise of Serverless is revolutionary and will
grow to dominate the future of Cloud

2. FaaS is a great first step, but let’s not stop here
3. Serverless 2.0 needs a runtime & programming

model for general-purpose application development
4. We can’t ignore/delegate the hardest thing: State
5. We think that Cloudstate shows the way

In Summary

