The Cloud Without the FlufF:

Rethinking Resource Disaggregation

Ryan Stutsman
University of Utah

U B_I[E\] IVERSITY A gta? Sca}?bge Computer
OF UTAH ystems La



There are smart people behind this work

3

Tian (Candy) Zhang Chinmay Kulkarni Mazhar N aqvi

Ankit Bhardwaj Jacob Barzee Robrt Ricci Sara Moore



Outline

1. Basically, a rant on RDMA
2. Splinter, some real work we've done
3. Raving aspirations & Fawning over other people’s work



RDMA Rant



The Bad Old Days

Compute

Storage

Tight Coupling — Poor Utilization

Complicated Fault-tolerance



Disaggregation to the Rescue
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Disaggregation to the Rescue

Compute

Key: tenant densities at
compute and storage are
very different.

10s of VMs
VS
1000s of storage tenants
per machine

—

Storage

ompute & Storage using Network

Provision at Idle Capacity

CScale Independently>




The Fly in the Ointment

Compute

Data Movement
‘G ;
Storage

High-delay Network Stacks Leave Compute Stalled

N
Vg Massive Data Movementment Destroys Efficiency

ﬁ Can Run Tenant Logic to Avoid Some Movement



1 us @ 200 Gbps!
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1-sided RDMAs in approximately one slide

L

READ,
Remote VA,
Local VA

28

Memory-mapped |I/O over PCle to post RDMA descriptor

Remote virtual address, length, & local address target



1-sided RDMAs in approximately one slide

READ,
Remote VA,
Local VA

Local NIC forward RDMA READ operation to remote NIC



1-sided RDMAs in approximately one slide

READ,
Remote VA,
Local VA

Remote NIC transfers requested back to client

Local NIC DMAs data from NIC into chosen destination
no CPU involvement at the remote machine



2-sided RDMAs (For completeness)

SEND,
Local VA

Remote machine gets a notification of recv'd message

Still uses fast DMA, but “activates” remote CPU
(which would usually be polling for the message)



The Tricky Part of 1-sided RDMA

Local Remote

get(k)?

L




The Tricky Part of 1-sided RDMA

Local Remote

get(k)?

P
rdma_read(p +?) 5

rdma_read(p + h(k) % n)

e yp
.




The Tricky Part of 1-sided RDMA

Local Remote
get(k)?

L
rdma_read(p + ?) |
rdma_read(p + h(k) % n)

B ——
rdma_read(p’) W7’
strcmp




The Tricky Part of 1-sided RDMA

Local Remote

ga"

rd 1. “Read amplification” traversing server
2. Tight-coupling of client logic to server layout

rd 3. Complex synchronization

a. Access from other threads?

b. GC/compaction/defrag/hash table resize?
rd

strcmp g




1-sided RDMA

Compute
ms.detays
—
us delays
Storage

ﬁ 10-100x latency improvement



1-sided RDMA

Compute

ms-detays
us delays

Storage

ﬁ 10-100x latency improvement

@ Restricted Programming Interface



1-sided RDMA

Compute

ms-detays

—

us delays

Data Movement

Storage

ﬁ 10-100x latency improvement

Vg Restricted Programming Interface

<~ Explosionin Data Movement



Fast and Dumb?




Catch 22

> 10,000 machines blasting data at 200 Gbps
doesn’t make sense

But, making storage tier programmable
risks locking compute and storage tier

We can’t go back to poor scaling, utilization, and
fFault-tolerance!



Splinter [OSDI'18]



The Splinter Vision in a Nutshell

What would it take to solve this?



The Splinter Vision in a Nutshell

What would it take to solve this?
us-scale Storage-level Functions

10s of Millions of Invocations per Second per Server
(2-sided ops!)

Native Code Performance
Strong Isolation For > 10,000 Tenants

Dynamic Placement of Function Execution



The Splinter Vision in a Nutshell

What would it take to solve this?
us-scale Storage-level Functions

10s of Millions of Invocations per Second per Server
(2-sided ops!)

Native Code Performance

Strong Isolation For > 10,000 Tenants

Avoids data movement
without coupling compute and storage

Dynamic Placement of Function Execution 3



Splinter in Action: Simple CRUD

|
- -

Kernel-bypass & Zero-copy Networking

Lookup of Small Data Item — ~10 pys



Splinter in Action: UDF Invocation

EEEEEE

Invocation of Small User-defined Function — ~10 ps



Internal Dispatch and Request Processing
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Facebook Tao

FaRM

Splinter

0 200,000 400,000
ops/s/core ops/s/core

“Onloading” assoc_range LinkBench ops improves tput

Take with a massive grain of salt
old version of FaRM, different hw, older NICs, etc etc.

Shows promise - combining is actually best

Problem: only works if not server CPU bottlenecked



Splinter in Action

Dynamically shift invocations to avoid bottlenecks
Exploit idle compute anywhere
No data movement in the normal case

No tight coupling of compute and storage



Applying Others’ Amazing Ideas



Two Key Challenges

e Fine-grained Scheduling
o Head-of-line-blocking — preemption — inefficient kthreads?
o New ideas virtualizing CPU interrupt controller
o Now possible to preempt tasks at 5 ps granularity
o Great for tail latency!

e Strong Protection
o Speed — native code — hardware isolation — slow
o 210,000 functions — context switches — low tput, utilization
o Fastring 3 to ring 3 address space switching with VMFUNC



The Benefit of Fine-grained Preemption
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Simulated 32 cores with open-loop load clients

99.9% 1 ps requests with 0.1% 500 s requests

HOB destroys response times unless 5 gs quanta



New Hw Protection Scales Better

500
10-tenants with VMFUNC —&—
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Conventional page table switch cuts to ~%2 throughput
New hw schemes give good performance & VM isolation

Fast enough that DB/storage can use ubiquitously



Current Status

(Mostly) cooperative + language-based protection
Works but struggles if functions run long
Vulnerable to speculative execution attacks

Currently assessing secondary impacts of fine-grained
preemption and protection

I-cache and TLB pressure likely to be significant



Comparison with Morsel Parallelism

Does this matter if a store JITs SQL queries?
SQL can be compiled to be cooperative
Can break into granular chunks of work and balance

But,
This doesn’t help with UDFs
Only works if JIT'ed coded is trusted
And still might be less efficient
(pre-emption can have 0 cost if it isn't triggered)



Summary

Fast networks don’t solve disaggregation inefficiency

Delivering ps-scale kernel-bypass performance at scale is
more than a network problem

Current scheduling and protection approaches
breakdown

Storage layer/database will need fine-grained control
over scheduling and protection
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