The Cloud Without the FlufF:

Rethinking Resource Disaggregation

Ryan Stutsman
University of Utah

U B_I[E\] IVERSITY A gta? Sca}?bge Computer
OF UTAH ystems La

There are smart people behind this work

3

Tian (Candy) Zhang Chinmay Kulkarni Mazhar N aqvi

Ankit Bhardwaj Jacob Barzee Robrt Ricci Sara Moore

Outline

1. Basically, a rant on RDMA
2. Splinter, some real work we've done
3. Raving aspirations & Fawning over other people’s work

RDMA Rant

The Bad Old Days

Compute

Storage

Tight Coupling — Poor Utilization

Complicated Fault-tolerance

Disaggregation to the Rescue

Compute

S

= X[- ==

— —

Storage

Decouple Compute & Storage using Network

Disaggregation to the Rescue

Compute

N

= X[==

— —

Storage

Decouple Compute & Storage using Network

Provision at Idle Capacity

Disaggregation to the Rescue

Compute

— —

Storage

Decouple Compute & Storage using Network
Provision at Idle Capacity

Scale Independently

Disaggregation to the Rescue

Compute

Key: tenant densities at
compute and storage are
very different.

10s of VMs
VS
1000s of storage tenants
per machine

—

Storage

ompute & Storage using Network

Provision at Idle Capacity

CScale Independently>

The Fly in the Ointment

Compute

Data Movement
‘G ;
Storage

High-delay Network Stacks Leave Compute Stalled

N
Vg Massive Data Movementment Destroys Efficiency

ﬁ Can Run Tenant Logic to Avoid Some Movement

1 us @ 200 Gbps!

The End of
a -
Myth: Distributed Transacti
ions Can S
ca
Erfan Zamanian c i
Brown Universi arsten Binni
erfanz@cs. rsity Brown Uni ng Ti i
brown. rown University im Harris Y
edu carsten_binnig@broy Oracle Labs Tim K
—_—_ .edu timothy.l.harris@o Brown U@Ska
AL _ nl "
53 rackcom im Kaska@orown.od
e
w ABS
o0 STRAC
ot & -o&\\\&i Gt e is that distri Drsc
A g & cepisn 5o e et ey e e 7 e/ab
y{‘“\ distribu '.w"i iom of s made scal- SR ications (c.g., social ¥ [9]. For 6 i/,
s ted databases? | and N be abl apps), a devel .
W o devel ses? There would - zn of be able to design a proper shardi reloper might not 7
N 0% opers to worry about ¢ no longer be : applications are notoriou sharding scheme since those Uy, V
\\‘5"\ \uge ectat sk orry about co-partitioni A a need for But arc nok sly hard to ; since e Fo)
Rl e e At o sk i ot rmaction ol a5, O,
“‘\do bl e s l“i.l-'ﬁll.xnl would no lunve'rqu \osps “‘cng v = ""’“l generation of network f)w'd be made scalable 7b se ,.s
lified el is. Hard per deternune how scal : fatabase design? wm"‘"‘“ we could rethink o) $ I/"/'
g system admini o g would be sim- s b Eansaets il we would tre: S
.\ out ‘,’b“' adding inistrator can expect a B S;m- the system would boc ? The perf =il every b
Q& « sub-lincar i oo machines rather le would ome more predi of Q) ,
o zar function, which is highl than some complex b no longer need to wi ictable. The developer . ¢ ed
K Q&‘ dal'n this paper, we present the d;fiwhcauon specific, in order to achieve Scalabutl.:; :’:‘d'“! co-partitioning thn?cm
> g Satabasc system NAM-DB and bromptrgrslsintmmer system would scale out lincarl iecont pesfmance: Th Yoy, Liect, 250
M O o with the vy common S mof o el bl aterthn by e wben s o o N TN
X indeed scale usi pshot Tsolati it much use of partitioni " <t Ry
PO @ indecatislo e o pasgion of : can mich euci ko puivision Row sk hotting effects, making > 4 @, W Y4
“\e‘\\?\‘ %v\%\ B 9 perim Raology: withont soy ihereht ,,‘RMDMA enzbled net but i ould this make co-partitioning h:: e ;'::”,0'7 ,’710.4 g’% OSS/,’
o W Taed | (W cots with the TPC-C cnecks. Our its iy S e solete? Probably g (P
.\“Q\ \‘Q“ o & scales lincarl >-C benchmark show ex- ing a nocoasi ould signifs Iy ch ' y not, o W so 4 '90
o A& (;.\@“ A y to over 6.5 milli that our systc cssity to achi y change. Instead of Vo A Tep 7 hH
o ‘f: D \’A.\:'& & \: ‘,\c* &\fw tal) distributed lrmﬁo‘;:;l:"" flﬂ'~otda(14.5 millizng :_c“’"dfl&m design B M’:ﬂz‘mm it he;ml mh: :d"“o,:h“'!,:k,i Uy %/)7 &
g A O 3 N 1 2 ond on 56 machines. formance of a few 0. in oeder ko iy S %, %
S S e it e i canelp sl ci o1 i csin g g
T o S scale |40, 2 wisdom is that distributed transacti In this paper, we will show thi quencs. Fgy & 14, 0 o,y oy 0t
oo T e SETPRR A SR e G e vy el
S o ‘\&\‘\ AV @ N o locality aware parti istributed transactions rangi e g next generation of RDMA-enabl can indeed scale ORI “ e""d’cvlg'll’/"}
T ph: i partitioning [35, 33, 12, 43] : ranging from nology without an i | ki , B, & Yy’
s e oot pestam B b no conmiancy Vel 124 ad th rlaxaton Jod i, Wih Remot-Diret Memoey. Acees Pl %;"*ﬁ;‘%‘ 'izll"‘f:@%%‘“ o
3 20080 ey 6“;\ R X . y guarantees [25]. Eve % . relaxation it is possible t -Dircct-Memory-Access 'y S a, Y % P
@‘\\Q \iQ"“' o« Ao ‘& o niques are not tra . Even worse, most of the: i o 0 bypass the CPU whi (RDMA), o o Ty, W Uy Sl o Ui &
A g o ope nsparent to the deve of thess tech e to another. M when transferring data o Al a5 o B
oot A o] r not only has to und toper. Instead, the showed, = ; ot /iy, 050, L oo,
W00 o o techai o d all the impli devel- , the current RCOVER K5 OUE [N 5 a7 P, Py SQp L, %,
s A S hni I the implicati ; generation of work [10 »"’"’*7-'1:9-"0
\ PRI St RS g ques, but also must P of such as Infini tion of RDMA-ci I ;o . £)
4 Q‘O take advanta carcfully desi s of these nfiniBand I'DR 4, i capable networks, I 4y 4 y X ,, o U
w ‘QA\\\ \“\%0 “\%\C P age of them. [gn the application to width: simils x, is already able ¢ 2 233 a g 2>y, 0, w0y, € b,
; PR S S v o user to care em. For example, Oracl ; r to the aggregated o provide a band- 4 Ugp, iy e
AW e N % ully specif # : le a CPU socke i ated memory bandwidih b oy, , 08, Sy :
M \J\& ‘c(‘\ob \06\. ?\“*?0‘« SQL constructs [15] A)’{lhe co-location of data uxmm f?" are ke socket and its attached RAM. Both Z{?‘Q- l"-'l;qll, G(\ N S .-,:(
o ~\‘°0.uv°‘3\\\\'5\‘b «‘6 ¥ duced in Azure SélIgas‘mlhw(emf"eW"Sahaumcnflwm Stalabl)cl: H to make di it ““ o "‘:?: Sspecty 7"'7‘0("1&(&’ N --\ll i X
AV aeciee e #ble 3o 106 ver [2]. “““‘"“-‘Wllmumy'm"' o owever, as we will show, the ctions. truly oy Pl s, Ve B , e,
4 o respect the pastitioning, scherme ong as all networks does not automatically yi » the next gencration of o % ala,q'o oy,
R DR AR A 3 designing distributed datab y yicld scalability without re-) e '*o,,?’»,hfeqj,’.(‘/l/o Cag
sl Basndaow old” architecture, the In fact, when keepi | !%% . /)0 vy, 2667
performance can someti ping the 2, Ay, Uy 2 o)
o mes cven de- Wy, Yo '«,J;"
g ey, g
Ive Pe F e Mo 'l'-v:"})l,'q
,, rFformance!
A
- ° PP ° h
Right?
oy
N
By,

685

1-sided RDMAs in approximately one slide

L

READ,
Remote VA,
Local VA

28

Memory-mapped |I/O over PCle to post RDMA descriptor

Remote virtual address, length, & local address target

1-sided RDMAs in approximately one slide

READ,
Remote VA,
Local VA

Local NIC forward RDMA READ operation to remote NIC

1-sided RDMAs in approximately one slide

READ,
Remote VA,
Local VA

Remote NIC transfers requested back to client

Local NIC DMAs data from NIC into chosen destination
no CPU involvement at the remote machine

2-sided RDMAs (For completeness)

SEND,
Local VA

Remote machine gets a notification of recv'd message

Still uses fast DMA, but “activates” remote CPU
(which would usually be polling for the message)

The Tricky Part of 1-sided RDMA

Local Remote

get(k)?

L

The Tricky Part of 1-sided RDMA

Local Remote

get(k)?

P
rdma_read(p +?) 5

rdma_read(p + h(k) % n)

e yp
.

The Tricky Part of 1-sided RDMA

Local Remote
get(k)?

L
rdma_read(p + ?) |
rdma_read(p + h(k) % n)

B ——
rdma_read(p’) W7’
strcmp

The Tricky Part of 1-sided RDMA

Local Remote

ga"

rd 1. “Read amplification” traversing server
2. Tight-coupling of client logic to server layout

rd 3. Complex synchronization

a. Access from other threads?

b. GC/compaction/defrag/hash table resize?
rd

strcmp g

1-sided RDMA

Compute
ms.detays
—
us delays
Storage

ﬁ 10-100x latency improvement

1-sided RDMA

Compute

ms-detays
us delays

Storage

ﬁ 10-100x latency improvement

@ Restricted Programming Interface

1-sided RDMA

Compute

ms-detays

—

us delays

Data Movement

Storage

ﬁ 10-100x latency improvement

Vg Restricted Programming Interface

<~ Explosionin Data Movement

Fast and Dumb?

Catch 22

> 10,000 machines blasting data at 200 Gbps
doesn’t make sense

But, making storage tier programmable
risks locking compute and storage tier

We can’t go back to poor scaling, utilization, and
fFault-tolerance!

Splinter [OSDI'18]

The Splinter Vision in a Nutshell

What would it take to solve this?

The Splinter Vision in a Nutshell

What would it take to solve this?
us-scale Storage-level Functions

10s of Millions of Invocations per Second per Server
(2-sided ops!)

Native Code Performance
Strong Isolation For > 10,000 Tenants

Dynamic Placement of Function Execution

The Splinter Vision in a Nutshell

What would it take to solve this?
us-scale Storage-level Functions

10s of Millions of Invocations per Second per Server
(2-sided ops!)

Native Code Performance

Strong Isolation For > 10,000 Tenants

Avoids data movement
without coupling compute and storage

Dynamic Placement of Function Execution 3

Splinter in Action: Simple CRUD

|
- -

Kernel-bypass & Zero-copy Networking

Lookup of Small Data Item — ~10 pys

Splinter in Action: UDF Invocation

EEEEEE

Invocation of Small User-defined Function — ~10 ps

Internal Dispatch and Request Processing

Tenant Data Storage Server
(| ——
—
F — —
,ﬂ::::]] [— /i
LV _pmmm — —
T~ (>~ _] :
/ L L JEi%ig%T_ ii%gﬁii?_ThskScheduhng
/ Sy [[[
P - - = =
, N | |
@ L DPDK Receive
Queues
-~ ‘\
Tenant-provided S~ \\A Tenant-Based
Functions NIC-level Dispatch
RNIC
THER
4 "% .
/ N
s 4

‘.

Tenants

|

Facebook Tao

FaRM

Splinter

0 200,000 400,000
ops/s/core ops/s/core

“Onloading” assoc_range LinkBench ops improves tput

Take with a massive grain of salt
old version of FaRM, different hw, older NICs, etc etc.

Shows promise - combining is actually best

Problem: only works if not server CPU bottlenecked

Splinter in Action

Dynamically shift invocations to avoid bottlenecks
Exploit idle compute anywhere
No data movement in the normal case

No tight coupling of compute and storage

Applying Others’ Amazing Ideas

Two Key Challenges

e Fine-grained Scheduling
o Head-of-line-blocking — preemption — inefficient kthreads?
o New ideas virtualizing CPU interrupt controller
o Now possible to preempt tasks at 5 ps granularity
o Great for tail latency!

e Strong Protection
o Speed — native code — hardware isolation — slow
o 210,000 functions — context switches — low tput, utilization
o Fastring 3 to ring 3 address space switching with VMFUNC

The Benefit of Fine-grained Preemption

500

99th-pctile Latency (us)

400

300

200

100 |

No Preemption —8—
4 ms Time Quanta —a—
5 us Time Quanta —e—

3x throughput

improvement
with 10x

median to tail

- - - - = -

- - - - - -
~i

Throughput (Millions/request/s)

Simulated 32 cores with open-loop load clients

99.9% 1 ps requests with 0.1% 500 s requests

HOB destroys response times unless 5 gs quanta

New Hw Protection Scales Better

500
10-tenants with VMFUNC —&—

100-tenants with VMFUNC —e—
400 | 1000-tenants with VMFUNC —&—

3 10000-tenants with VMFUNC —v—

5

S 300 f

T

- Up to &—-—--rpm
g 200F 1.7x throughput o -—-—-—-==-=-- >

Q_ °

< iImprovement

$ 100

G TEFTTTTTFFTTETEET TTTEEEEE T T A

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Throughput (Millions/request/s)

Conventional page table switch cuts to ~%2 throughput
New hw schemes give good performance & VM isolation

Fast enough that DB/storage can use ubiquitously

Current Status

(Mostly) cooperative + language-based protection
Works but struggles if functions run long
Vulnerable to speculative execution attacks

Currently assessing secondary impacts of fine-grained
preemption and protection

I-cache and TLB pressure likely to be significant

Comparison with Morsel Parallelism

Does this matter if a store JITs SQL queries?
SQL can be compiled to be cooperative
Can break into granular chunks of work and balance

But,
This doesn’t help with UDFs
Only works if JIT'ed coded is trusted
And still might be less efficient
(pre-emption can have 0 cost if it isn't triggered)

Summary

Fast networks don’t solve disaggregation inefficiency

Delivering ps-scale kernel-bypass performance at scale is
more than a network problem

Current scheduling and protection approaches
breakdown

Storage layer/database will need fine-grained control
over scheduling and protection

Image Attributions:

Blue Flame: Public Domain; wikipedia.com

Network card icon: Icon made by srip from www.flaticon.com
CPU icon: Icon made by monkik from www.flaticon.com
Memory icon: Icon made by Smashicons from www.flaticon.com

