
The Cloud Without the Fluff:
Rethinking Resource Disaggregation

Ryan Stutsman
University of Utah

Utah Scalable Computer
Systems Lab

There are smart people behind this work

Outline

1. Basically, a rant on RDMA
2. Splinter, some real work we’ve done
3. Raving aspirations & fawning over other people’s work

RDMA Rant

Tight Coupling → Poor Utilization

Complicated Fault-tolerance

The Bad Old Days

Compute

Storage

Decouple Compute & Storage using Network

Disaggregation to the Rescue

Compute

Storage

Decouple Compute & Storage using Network

Provision at Idle Capacity

Disaggregation to the Rescue

Compute

Storage

Decouple Compute & Storage using Network

Provision at Idle Capacity

Scale Independently

Disaggregation to the Rescue

Compute

Storage

Decouple Compute & Storage using Network

Provision at Idle Capacity

Scale Independently

Disaggregation to the Rescue

Compute

Storage

Key: tenant densities at
compute and storage are
very different.

10s of VMs
vs

1000s of storage tenants
per machine

High-delay Network Stacks Leave Compute Stalled

Massive Data Movementment Destroys Efficiency

Can Run Tenant Logic to Avoid Some Movement

The Fly in the Ointment

Compute

Storage

La
te

nc
y

Data Movement

1 μs @ 200 Gbps!

Transformative Performance! … Right?

1-sided RDMAs in approximately one slide

Memory-mapped I/O over PCIe to post RDMA descriptor

Remote virtual address, length, & local address target

READ,
Remote VA,

Local VA

1-sided RDMAs in approximately one slide

Local NIC forward RDMA READ operation to remote NIC

READ,
Remote VA,

Local VA

1-sided RDMAs in approximately one slide

Remote NIC transfers requested back to client

Local NIC DMAs data from NIC into chosen destination
no CPU involvement at the remote machine

READ,
Remote VA,

Local VA

2-sided RDMAs (for completeness)

Remote machine gets a notification of recv’d message

Still uses fast DMA, but “activates” remote CPU
(which would usually be polling for the message)

SEND,
Local VA

The Tricky Part of 1-sided RDMA

Local

get(k)?

Remote

p’

p

k v

The Tricky Part of 1-sided RDMA

Local

get(k)?

rdma_read(p + ?)

rdma_read(p + h(k) % n)

Remote

p’

p

k v

The Tricky Part of 1-sided RDMA

Local

get(k)?

rdma_read(p + ?)

rdma_read(p + h(k) % n)

rdma_read(p’)

strcmp

Remote

p’

p

k v

The Tricky Part of 1-sided RDMA

Local

get(k)?

rdma_read(p + ?)

rdma_read(p + h(k) % n)

rdma_read(p’)

strcmp

Remote

p’

p

k v

1. “Read amplification” traversing server
2. Tight-coupling of client logic to server layout
3. Complex synchronization

a. Access from other threads?
b. GC/compaction/defrag/hash table resize?

10-100⨉ latency improvement

1-sided RDMA

Compute

Storage

ms delays
→

μs delays

10-100⨉ latency improvement

Restricted Programming Interface

1-sided RDMA

Compute

Storage

ms delays
→

μs delays

10-100⨉ latency improvement

Restricted Programming Interface

Explosion in Data Movement

1-sided RDMA

Compute

Storage

ms delays
→

μs delays
Data Movement

Fast and Dumb?

Catch 22

 > 10,000 machines blasting data at 200 Gbps
doesn’t make sense

But, making storage tier programmable
risks locking compute and storage tier

We can’t go back to poor scaling, utilization, and
fault-tolerance!

Splinter [OSDI’18]

The Splinter Vision in a Nutshell

What would it take to solve this?

The Splinter Vision in a Nutshell

What would it take to solve this?

μs-scale Storage-level Functions

10s of Millions of Invocations per Second per Server
(2-sided ops!)

Native Code Performance

Strong Isolation for ≥ 10,000 Tenants

Dynamic Placement of Function Execution

What would it take to solve this?

μs-scale Storage-level Functions

10s of Millions of Invocations per Second per Server
(2-sided ops!)

Native Code Performance

Strong Isolation for ≥ 10,000 Tenants

Dynamic Placement of Function Execution

The Splinter Vision in a Nutshell

Avoids data movement
without coupling compute and storage

Splinter in Action: Simple CRUD

Kernel-bypass & Zero-copy Networking

Lookup of Small Data Item → ~10 μs

Splinter in Action: UDF Invocation

Invocation of Small User-defined Function → ~10 μs

Internal Dispatch and Request Processing
Storage Server

RNIC

Tenants

Tenant-Based
NIC-level Dispatch

Task Scheduling

DPDK Receive
Queues

Tenant-provided
Functions

Tenant Data

Facebook Tao

“Onloading” assoc_range LinkBench ops improves tput

Take with a massive grain of salt
old version of FaRM, different hw, older NICs, etc etc.

Shows promise - combining is actually best

Problem: only works if not server CPU bottlenecked

400,000
ops/s/core

200,000
ops/s/core

0

Splinter

FaRM

Splinter in Action

Dynamically shift invocations to avoid bottlenecks

Exploit idle compute anywhere

No data movement in the normal case

No tight coupling of compute and storage

Applying Others’ Amazing Ideas

Two Key Challenges

● Fine-grained Scheduling
○ Head-of-line-blocking → preemption → inefficient kthreads?
○ New ideas virtualizing CPU interrupt controller
○ Now possible to preempt tasks at 5 μs granularity
○ Great for tail latency!

● Strong Protection
○ Speed → native code → hardware isolation → slow
○ ≥10,000 functions → context switches → low tput, utilization
○ Fast ring 3 to ring 3 address space switching with VMFUNC

The Benefit of Fine-grained Preemption

Simulated 32 cores with open-loop load clients

99.9% 1 μs requests with 0.1% 500 μs requests

HOB destroys response times unless 5 μs quanta

3x throughput
improvement

with 10x
median to tail

New Hw Protection Scales Better

Conventional page table switch cuts to ~½ throughput

New hw schemes give good performance & VM isolation

Fast enough that DB/storage can use ubiquitously

Up to
1.7x throughput

improvement

Current Status

(Mostly) cooperative + language-based protection

Works but struggles if functions run long

Vulnerable to speculative execution attacks

Currently assessing secondary impacts of fine-grained
preemption and protection

I-cache and TLB pressure likely to be significant

Comparison with Morsel Parallelism

Does this matter if a store JITs SQL queries?
SQL can be compiled to be cooperative
Can break into granular chunks of work and balance

But,
This doesn’t help with UDFs
Only works if JIT’ed coded is trusted
And still might be less efficient

(pre-emption can have 0 cost if it isn’t triggered)

Summary

Fast networks don’t solve disaggregation inefficiency

Delivering μs-scale kernel-bypass performance at scale is
more than a network problem

Current scheduling and protection approaches
breakdown

Storage layer/database will need fine-grained control
over scheduling and protection

Image Attributions:

Blue Flame: Public Domain; wikipedia.com
Network card icon: Icon made by srip from www.flaticon.com
CPU icon: Icon made by monkik from www.flaticon.com
Memory icon: Icon made by Smashicons from www.flaticon.com

