
Fast, fault-tolerant transactions
as an OS extension

Benjamin A. Braun, David Cheriton

Stanford University

HPTS 2019

1.

Motivation: Complex, durable state

Application Shared State

John Doe | 3 | 15.0 | 2019-10-01

Application

Application

Dataset size Durable

Telecom host registry TBs Txns
Online game 10s of TBs Txns
DNA sequence alignment/assembly 100s of GBs Checkpoints
Fire/weather simulation TBs Checkpoints

• Large, ad-hoc shared state, with durability, parallelism

2.

Database Management Systems

Application

Inter-Process
Communication
(or Network)

Database

Application

Application

Queries can feel limiting & inconvenient to developer

Socket communication round-trip time on data access path
(>2 µs local, >7 µs in-datacenter)

• DBMS aren’t always the right solution

3.

Transactions at the speed of memory

Database libraries arose to serve in-memory data faster

Transactions in terms of simple, efficient function calls to library

• Libraries offer durability, memory-speed access

4.

Application bugs with database libraries

Application Database internal log buffer

strcpy()

Buggy application "scribbles" over database datastructures
=⇒ data loss, possibly corruption

• The root problem is a lack or isolation

5.

Shared State

Inter-process
Communication

Application

Application

Application

• DBMS applies changes. Process isolation.
Communication cost.

6.

Shared State

Application

Library

• Database library applies changes. No isolation.

7.

OS isolation: Transactional Virtual Memory

Shared State

OS Kernel

A
p
p
lic

a
ti

o
n

A
p
p
lic

a
ti

o
n

A
p
p
lic

a
ti

o
n

Userspace

• OS kernel applies changes. Shared memory with isolation.
Transactional virtual memory.

8.

TVM vs. database libraries, DBMS

• Crash failures: Protected.
• Application bugs: Some protection.

– Write scribbles don’t hit durable data unless committed
– Shared state isolated from application bugs

• Data structure: Unstructured.
– Same API as software transactional memory
– No support for queries

• Toolkit: debugger, performance traces, load balancing,
resource limiting, access control, work as-is from OS.

– Mostly same as libraries
– DBMS IPC breaks control flow

TVM combines useful properties of both DBMS, libraries

9.

This is a terrible idea

Shared State

Page tables

OS locks slower than memory locks (>1.4 µs vs >200 ns)

Puts system call (>400 ns) on the commit path

Puts page fault (>1.2 µs) on the data access path

• Seems dead in the water.

10.

Transaction processing tricks

W(x)

Reads, writes by
virtual memory

Defer locks,
Syscall txn end

t2t1
R(x)

Userspace
 writeset

R(y)

• Defer locking until commit, snapshot isolation
• Avoid repeated faults, keep pages across txns
• Buffer writes in userspace, read-your-writes cache

Getting the most out of each OS entrance

11.

Giving up on serializability

Given SI-safe dictionary, arrays, queues, can do most tasks

Conflict-on-free: Allocator writes zeros on free
• Fixes anomalies deriving from use-after-free

Automatic correction of snapshot isolation anomalies
[Litz, et.al., 2015]

• Have tools to avoid snapshot isolation anomalies

Litz, Heiner, Ricardo J. Dias, and David R. Cheriton. "Efficient correction of anomalies in snapshot isolation

transactions." ACM Transactions on Architecture and Code Optimization (TACO) 11.4 (2015): 65.

12.

Shared pages

Virtual Memory

Shared page table
Proxy pages

• Shared pages, page tables for write-cold data
• Proxy pages for write-hot data

Can use heuristics to balance frequent faults with upkeep

13.

Results

1. We show TVM achieves durable transaction performance
>95% that of software transactional memory

2. We demonstrate porting parallel applications to TVM,
adding fault-tolerance without massive application changes

3. We prove that TVM can be implemented as a simple
extension to a conventional OS

14.

Implementation of TVM for Linux: Thistle

+

15.

Thread
Isolating
Transactions as
Kernel
Extension.
(Thistle)

16.

Evaluation

Implementation of TVM for Linux: Thistle

Comparison vs DBMS: MySQL, KeyDB

Comparison vs software transactional memory (STM) +
write-ahead logging for durability. Systems tested:
• A snapshot isolation variant of TinySTM.
• SI-TM inspired Multi-version concurrency control (MVCC)

Experiment controls:
• Same implementation of write-ahead logging

– 5µs simulated log persistence latency
• Same implementation of transactional malloc / free
• Lock / timestamp table 100K entries, 64-byte granularity
• Snapshot isolation transactions

17.

TVM performance vs DBMS

4Rd, 4Wr/Txn, 80% read−only 4Rd, 4Wr/Txn, 100% writes

0.0

0.5

1.0

0

1

2

3

System

Th
ro

ug
hp

ut
(M

Tx
ns

/s
)

Thistle MySQL KeyDB

• Stark contrast between inter-process communication
(IPC – DBMS) and in-memory access (TVM).
• Note: KeyDB does not scale past 4 threads

IPC-based isolation a significant overhead for DBMS.

18.

TVM performance vs durable STM

intruder linked list vacation
80% R/W vacation yada ssca2

labyrinth kmeans btree seq
95% R/W

btree
95% R/W genome btree

50% R/W

0

5

10

0

1

2

3

0

3

6

9

0

1

2

3

0
3
6
9

12

0
3
6
9

12

0

4

8

12

0

3

6

0
3
6
9

12

0

2

4

0

2

4

6

0
3
6
9

12

System

S
pe

ed
up

vs
.

S
eq

ue
nt

ia
l,

16
Th

re
ad

s

Thistle TinySTM−SI MVCC

Virtual memory manipulations can take up to 50% runtime

For 8 out of 12 experiments, relative performance is >80%.

19.

Validating reads

Relax requirement for view to match snapshot timestamp
• Timestamp validated cache line reads in userspace
TM_READ(word* pointer):

word toRet = *pointer
if (TIMESTAMP_TABLE[hash(address)]

> snapshot_ts) then abort

What do we lose?
• Unmodified code can’t read safely
• Single version =⇒ read-after-write aborts
• Sequential reads slower due to validation

Read validation avoids costs of page table manipulation,
loses some of the benefits of snapshot isolation

20.

TVM + validating reads vs durable STM

intruder linked list vacation
80% R/W vacation yada ssca2

labyrinth kmeans btree seq
95% R/W

btree
95% R/W genome btree

50% R/W

0

5

10

0

1

2

3

0

3

6

9

0

1

2

3

0

5

10

0
3
6
9

12

0

4

8

12

0

3

6

9

0
3
6
9

12

0

2

4

0

2

4

6

0
3
6
9

12

System

S
pe

ed
up

vs
.

S
eq

ue
nt

ia
l,

16
Th

re
ad

s

Thistle Thistle +ValR TinySTM−SI MVCC

>95% the speed of state-of-the-art STMs on 8 benchmarks

Eliminates most overheads, OS entry/exit up to 10% runtime
21.

Round-based simulations

Transactional phase Non-transactional, direct access

Recovery points Recovery point
Persist pages modified

since prior recovery point

• Particle simulation, 4GB of particles, sharded by position
• Move particles (non-txnal) then reshard each round (txnal)
• Recovery point every 1s adds <3% overall overhead.

– Reference: Dumping 4GB striped across 2 SSDs takes ∼1s

TVM gives both checkpoint durability and txnal durability

22.

More uses

...

Application

Application

Applicationx

Human Readable!Producer

Producer
Data Table
 (in text)

• Memory-speed KV-store that tolerates bugs, kill signals
• R analysis on a changing data table file (700MB, text)

– Time to load data table <3% longer than from memory file.

Applications with ad-hoc data format, concurrency control, but
don’t need structured queries.

23.

Thistle

• Loadable kernel module for Linux v4.2.1+
and a userspace library libThistle
• New filesystem type: thistle

Lines of code

∼13K Thistle kernel module
966 Thistle userspace library

0 Lines of code changed in Linux.

For comparison: Linux mm subsystem is ∼80k lines.

• TVM can be implemented without changes to Linux.

24.

The OS is not the enemy.

I’m looking for an job in industry.
bjmnbraun at gmail dot com

25.

(Backup slides.)

26.

Transaction processing in Thistle

Combined commit
& update syscall

t1

W(x)

R(x)
Reads, writes
page faultWrites buffered

in userspace

Combined commit
& update syscall

t2

t2

R(y)

R(y)

Page table entry
to x cleared @ t2

Page table entry
to y still present

Writes update userspace
read-your-write cache

Writes appended
to write-ahead log

R(x)

Snapshot isolation transactions
Userspace creates writeset, read-your-writes cache

27.

Characterizing TVM performance

TVM handles two cases especially well, compared to STMs:
• Heavily read datastructures with concurrent modifiers

– Reads to concurrently written state lead to private pages
– Reads to private pages never abort
– Private pages never have false sharing
– ∼1.8x, 2.8x speedups on labyrinth, linked-list

• Sequential access
– Once a page is mapped into a threads’ view, reads are free.
– 1.3x speedup on sequential btree 95% reads

TVM tends to lose for high degrees of write contention.
• No system handles these well
• High contention is an anti-pattern

28.

Application changes to use TVM

• Each thread must be its own process
– i.e. pthread_spawn() -> fork()

• Application must place shared data in TVM-managed files
– Modified allocator provided for this purpose
– Global variables might need to be refactored

• Add transaction{} blocks to denote transactions
– Code transformations achievable with modern compilers

Code changes to use TVM are minor.

29.

Porting STAMP suite to OS-level TM

STAMP suite details: 7 applications, ∼18K lines of code

Lines Reason for change

85 Add multi-process support (fork, thread barriers, etc.)
240 Place shared data into transactionally managed segment
14 Snapshot isolation transaction model (intruder)

339 Total lines of code changed

Overall: <2% of lines changed to port STAMP to Thistle.

30.

Snapshot-isolation anomaly in intruder

T1

+

T2

+

Fragmented
Packet, N=7

transaction {
fragment = QUEUE_POLL(fragmentChannel);
packet = FIND_PACKET(fragment.packetID);
exists = LIST_INSERT(packet, fragment);
if (exists) { goto error; }
long list_size_after = LIST_GETSIZE(packet);
if (list_size_after == packet.N) {

QUEUE_PUSH(completePackets, packet);
}

}

• Adding a length field to the packet list resolves the
anomaly in just 14 lines of code.

31.

Performance breakdown

0

1

la
by

rin
th

km
ea

ns
bt

re
e

se
q

95
%

R
bt

re
e

95
%

R
ge

no
m

e
bt

re
e

50
%

R
in

tr
ud

er
lin

ke
d

lis
t

va
c.

80
%

R
va

ca
tio

n
ya

da
ss

ca
2

Fr
ac

tio
n

of
R

un
tim

e

Application
Page fault
Syscall overhead
Check conflicts
Commit
Update
Persistence wait

• Page fault at most 26%
• Syscall overheads at most 15% (mostly in syscall entry)

Largest overheads: Page faults, syscalls, and updating page map.
32.

Performance breakdown

0

1

la
by

rin
th

km
ea

ns
bt

re
e

se
q

95
%

R
bt

re
e

95
%

R
ge

no
m

e
bt

re
e

50
%

R
in

tr
ud

er
lin

ke
d

lis
t

va
c.

80
%

R
va

ca
tio

n
ya

da
ss

ca
2

Fr
ac

tio
n

of
R

un
tim

e

Application
Page fault
Syscall overhead
Check conflicts
Commit
Update
Persistence wait

• For yada, update dominated by software page table walks
• For ssca2, update dominated by applying writes to private pages

Largest overheads: Page faults, syscalls, and updating page map.
32.

Performance breakdown (detailed)

0

1

la
by

rin
th

km
ea

ns
bt

re
e

se
q

95
%

R
/W

bt
re

e
95

%
R

/W
ge

no
m

e
bt

re
e

50
%

R
/W

in
tr

ud
er

lin
ke

d
lis

t
va

c.
80

%
R

/W
va

ca
tio

n
ya

da
ss

ca
2

Fr
ac

tio
n

of
R

un
tim

e

Application
Page fault overhead
Page fault
New private page
Syscall overhead
Check conflicts
Log append
Update page metadata
Update
Page cache shrink
Syscall exit
Persistence wait
Checkpoints
GC checkpoints

33.

Breaking down pgfault overheads

• Poor scaling in down_read on mmap_sem
• Significant software overheads in page_fault,
_handle_mm_fault.

34.

TLB Invalidation costs

Our test machine (Intel x86) provides a single-page TLB flush
instruction as well as a full TLB flush instruction.

% Speedup: Entire TLB flush

btree seq 95%R/W 1
btree 95%R/W 1
btree 50%R/W 5
genome 1
intruder 1
kmeans 0
labyrinth 12
linked list 0
ssca2 1
vacation 2
vaca. 80%R/W 1
yada 8

• The single-page TLB flush instruction is sufficiently
expensive that calling it multiple times is prohibitive.
• Flushing the entire TLB instead after update (when at least

one page is changed) provided up to a ∼10% speedup.
35.

Performance breakdown: Validating reads

0

1

la
by

rin
th

km
ea

ns
bt

re
e

se
q

95
%

R
/W

bt
re

e
95

%
R

/W
ge

no
m

e
bt

re
e

50
%

R
/W

in
tr

ud
er

lin
ke

d
lis

t
va

c.
80

%
R

/W
va

ca
tio

n
ya

da
ss

ca
2

Fr
ac

tio
n

of
R

un
tim

e

Application
Page fault
Syscall overhead
Check conflicts
Commit
Persistence wait

• Validating reads eliminates page table manipulation costs,
at the price of requiring code modification to read

36.

