
Data-centric OSes
NVM and the Death of the Process

Daniel Bittman Peter Alvaro Ethan Miller

 UC Santa Cruz

1

HPTS ‘19

Data-centric OSes
NVM and the Death of the Process

Daniel Bittman Peter Alvaro Ethan Miller

 UC Santa Cruz

2

HPTS ‘19

3

Pe
rs

is
te

nt
 M

em
or

y

Applications

CPUs

Operating
Systems

Hardware Trends

4

~1-10 ms

sys_read

~300 ns ~1 us

Growing, becoming persistent Outdated interface Cannot compute on directly

Persistent data should be operated on directly and like memory

(artistic rendering;
actual implementation may vary)

Hardware Trends

Multiplicity of Computing Devices and
Heterogeneous Memory

ARM

5

Hardware’s Needs vs. Software’s Needs

Consideration Hardware Software

Latency ✓ ✓
In-memory Data Structures X ✓

Data Lifetime and Persistent Data
References X ✓

Memory Heterogeneity and Data
Movement ✓ X

6

Heterogeneity and Autonomy

NIC FPGA

Access data
A

Access data
A

DRAM BNVM

7

Data Movement

NIC FPGA

Access data
A

Move data
A

DRAM BNVM

8

In short...

Software cares about
long-lived data relationships,

even across program runs.

Hardware must provide
consistent data access, even

if it moves in memory.

9

Virtual memory is the wrong abstraction. Virtual memory is fine.

Software is easier to change than hardware

Twizzler: A new OS

Operating
systems

Operating
systems

The kernel is “out of the way”

Presents a unified interface for data sharing,
security, and persistent pointers

10

11

OS Community DB Community

The Death of the Process

12

Virtual address space

Threads

Kernel stateSecurity role

A global object space

13

A B

An object is a unit of semantically similar information

E.g. a b-tree, or part of one.

Persistent data should be operated on directly and like memory

A global object space

14

A B

An object is a unit of semantically similar information

E.g. a b-tree, or part of one.

Pointers may be cross-object: referring to data within a different object

Persistent data should be operated on directly and like memory

Persistent pointers in Twizzler

A B

C AB

Process 1

Process 2 A B

object-id offset

15

Virtual addresses are the wrong abstraction

Twizzler’s pointers

FOT entry offset

64-bits

FOT Data

Object Layout

object ID or Name Name Resolver flags

Foreign Object Table

object ID or Name Name Resolver flags

1

2
...

16

Example pointer resolution

1 <offset>

1 A rw-

2 B r--

O

FOT

A

FOT entry of >0 means “cross-object”—points to a different object.

17

Pointer implementation

O A

O’s FOT
1 → A

int *tmp0 = lea(O, ptr0);

int *tmp1 = lea(O, ptr1);

x = *tmp1; y = *tmp0;

0 <off>
ptr0

1 <off>
ptr1

T *lea(object, T *)
Convert a persistent pointer into a virtual address

18

Two-level Mapping

19

Object A
r-x

Object B
rw-

Object A
rwx

Object B
r--

Object C
r--

X

Virtual
Space

Object
Space

Physical
Memory

DRAM NVRAM

Security
Contexts!

n+m page tables!
(instead of n*m)

Hey look it’s a Venn Diagram

20

Persistent
Pointers

PMDK

Twizzler

Data sharing

Security model

Benchmark: SQLite, throughput

21

TWZ

Benchmark: SQLite, latency

22

TWZ

Takeaways - 1

23

We need to consider
persistent memory

programming in the context
of sharing and security

Persistent
Pointers

PMDK

Twizzler

Data sharing

Security model

Takeaways - 2

24

A flexible persistent pointer
design enables sharing,

upgrades, and late-binding

FOT entry offset

64-bits

FOT Data

Object Layout

object ID or Name Name Resolver flags

Foreign Object Table

object ID or Name Name Resolver flags

1

2
...

Takeaways - 3

25

We are building Twizzler to explore new programming models for NVM

We must evolve our storage models for new technology

Thank You!
questions / discussion

Daniel Bittman
dbittman@ucsc.edu

@danielbittman

Peter Alvaro
palvaro@ucsc.edu

Ethan L. Miller
elm@ucsc.edu

26

Case Study: KVS

27

Index Data

Lookup returns
direct pointers

250 lines of simple C code is all you need

lookup(key)
bucket = get_bucket(key)
item.ptr = lea(Index, bucket.ptr)
item.len = bucket.len

insert(key, value)
bucket = get_bucket(key)
bucket.ptr = store(Index, value.ptr)
bucket.len = value.len

(store is the reverse of lea: convert a virtual address into a persistent pointer)

Cast Study: KVS

28

Data2

Index

Data1

bucket = get_bucket(key)
item.ptr = lea(Index, bucket.ptr)
item.len = bucket.len

Add access control to the existing design

r--

Index points to different data objects with different access control.

Can hand out pointers to these objects, which can only be dereferenced with proper permissions.

Late-binding of access control

29

User
Database

rw-

User
manager

User
Database

r--

User
manager

Super user Normal user

