Dynamo at 15

What Worked and What’s Next in Majority-Quorum Databases

C. Scott Andreas, Apple Inc.
HPTS 2022 — Pacific Grove, California

Outline

* A look back at Dynamo ca. 2007

 Apache Cassandra’s journey as a Dynamo-derived database

e \What stood the test of time? %

* What needed revisiting?

Apache Cassandra

 What’s new and what’s next in majority-quorum databases?

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP'07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...85.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed
NoSQL Database Service

Mostafa Elhemali, Niall Gallagher, Nicholas Gordon, Joseph Idziorek, Richard Krog
Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somu Perianayagam ,Tim Rath
Swami Sivasubramanian, James Christopher Sorenson 111, Sroaj Sosothikul, Doug Terry, Akshat Vig

dynamodb-paper @ amazon.com

Amazon Web Services

Abstract

Amazon DynamoDB is a NoSQL cloud database service that
provides consistent performance at any scale. Hundreds of
thousands of customers rely on DynamoDB for its fundamen-
tal properties: consistent performance, availability, durability,
and a fully managed serverless experience. In 2021, during the
66-hour Amazon Prime Day shopping event, Amazon systems
- including Alexa, the Amazon.com sites, and Amazon fulfill-
ment centers, made trillions of API calls to DynamoDB, peak-
ing at 89.2 million requests per second, while experiencing
high availability with single-digit millisecond performance.
Since the launch of DynamoDB in 2012, its design and im-
plementation have evolved in response to our experiences
operating it. The system has successfully dealt with issues
related to fairness, traffic imbalance across partitions, moni-
toring, and automated system operations without impacting
availability or performance. Reliability is essential, as even
the slightest disruption can significantly impact customers.
This paper presents our experience operating DynamoDB at
a massive scale and how the architecture continues to evolve
to meet the ever-increasing demands of customer workloads.

1 Introduction

Amazon DynamoDB is a NoSQL cloud database service that
supports fast and predictable performance at any scale. Dy-
namoDB is a foundational AWS service that serves hundreds
of thousands of customers using a massive number of servers
located in data centers around the world. DynamoDB powers
multiple high-traffic Amazon properties and systems includ-
ing Alexa, the Amazon.com sites, and all Amazon fulfillment
centers. Moreover, many AWS services such as AWS Lambda,
AWS Lake Formation, and Amazon SageMaker are built on
DynamoDB, as well as hundreds of thousands of customer
applications.

These applications and services have demanding opera-
tional requirements with respect to performance, reliability,
durability, efficiency, and scale. The users of DynamoDB rely

USENIX Association

on its ability to serve requests with consistent low latency. For
DynamoDB customers, consistent performance at any scale
is often more important than median request service times be-
cause unexpectedly high latency requests can amplify through
higher layers of applications that depend on DynamoDB and
lead to a bad customer experience. The goal of the design of
DynamoDB is to complete all requests with low single-digit
millisecond latencies. In addition, the large and diverse set
of customers who use DynamoDB rely on an ever-expanding
feature set as shown in Figure 1. As DynamoDB has evolved
over the last ten years, a key challenge has been adding fea-
tures without impacting operational requirements. To benefit
customers and application developers, DynamoDB uniquely
integrates the following six fundamental system properties:

DynamoDB is a fully managed cloud service. Using the
DynamoDB API, applications create tables and read and write
data without regard for where those tables are stored or how
they’re managed. DynamoDB frees developers from the bur-
den of patching software, managing hardware, configuring a
distributed database cluster, and managing ongoing cluster
operations. DynamoDB handles resource provisioning, au-
tomatically recovers from failures, encrypts data, manages
software upgrades, performs backups, and accomplishes other
tasks required of a fully-managed service.

DynamoDB employs a multi-tenant architecture. Dy-
namoDB stores data from different customers on the same
physical machines to ensure high utilization of resources, en-
abling us to pass the cost savings to our customers. Resource
reservations, tight provisioning, and monitored usage provide
isolation between the workloads of co-resident tables.

DynamoDB achieves boundless scale for tables. There
are no predefined limits for the amount of data each table
can store. Tables grow elastically to meet the demand of the
customers’ applications. DynamoDB is designed to scale the
resources dedicated to a table from several servers to many
thousands as needed. DynamoDB spreads an application’s
data across more servers as the amount of data storage and
the demand for throughput requirements grow.

DynamoDB provides predictable performance. The simple

2022 USENIX Annual Technical Conference 1037

Landscape in 2007

Hardware

Intel Penryn (45nm)

Operating Systems

First 1TB HDD
(250GB common)

Linux 2.6.2

Databases

~32-64 GB Max RAM
(Major manufacturers)

Windows Vista

MySQL 5

SATA 2.6
Slim Connector

Mac OS X 10.5

SQL Server 9

Solaris 10

Postgres 8.2

Oracle 11g

Interest over time

Eventual
Consistency

Interest over time

Consistent
Hashing it ’[,

I | II A A
lh \l \ I ’\ 'J "] N\ Val 11‘ ,’l a4 \\/ | |, AII I'II l \ ""‘\J" "I'.il |
| .

V'\ |
'lM ‘I_[]_J’ U’IUMI"N"‘ h“al || ll” \AS

November 2007

Google Trends - “Eventual Consistency” and “Consistent Hashing,” accessed Sept 30, 2022.

“A Highly Available Key-Value Store”

Prioritizing ...

* |Leaderless architecture

* |Incremental scalability

e API: get(key), put(key, context, bytes)
* Avalilability as paramount (99.999%+)

* Aggressive Latency SLA (focus: 99.9th percentile)

“A Highly Available Key-Value Store”

Without ...

* Query Language * Rich Data Types

e Query Planner / Optimizer « Aggregations

* Transactions * Views

* Indexes * Functions / Procedures

« MVCC / Snapshot Isolation « Storage engine (pluggable)

What is a database?

Figure I.1 The Impact of Sustaining and Disruptive Technological Change

Performance
demanded at the high
end of the market

N \

Performance
demanded at the low

Disruptive \
end of the market

technological
innovation

@
O
-
@
£
—
O
) -
@
Q.
O
S
O
O
—
Q.

The Innovator’s Dilemma - Clayton M. Christensen. Harvard Business Review Press, 1997 - p. 16

Apache Cassandra

As I nt ro d u ce d Last week the Facebook Data team released Cassandra as open source. Cassandra is an structured

store with write ahead logging and indexing. Jeff Hammerbacher, who leads the Facebook Data
team described Cassandra as a BigTable data model running on a Dynamo-like infrastructure.
Google Code for Cassandra (Apache 2.0 License): http://code.google.com/p/the-cassandra-project/.
Avinash Lakshman, Prashant Malik, and Karthik Ranganathan presented at SIGMOD 2008 this

® Fi rSt re I ease Coaut h O red by COaut h O r Of year: Cassandra: Structured Storage System over a P2P Network. From the presentation:

Cassandra design goals:

Dynamo paper, then at Facebook. LSM High availabilty

Eventual consistency

Storage engine engine, majOrity—quorum - Incremental scalability

* Optimistic replication
a rC h iteCt u re] - Knobs to “tune” tradc.offs between consistency, durability, and latecy
 Low cost of ownership
* Minimal administration
Write operation: write to arbitrary node in Cassandra cluster, request sent to node owning the

o O S S) d I O O 8 S " b " O 09 data, node writes to log first and then applied to in-memory copy. Properties of write: no locks
I n 2 p A F I n C u at I O n 2) in critical path, sequential disk accesses, behaves like a write through cache, atomicity
_ " guarantee for a key, and always writable.
to p |eve| p rOJ eCt 2 O 1 O - Cluster membership is maintained via gossip protocol.

Lessons learned:
- Add fancy features only when required
- Many types of failures are possible

¢ Dyn a m O C O n Ce ptS - H u g e Ove rI a p : - Big systems need proper systems-level monitoring

* Value simple designs

Consistent hashing / DHT, tunable consistency, Future work

- Atomicity guarantees across multiple keys

gOSSl p, h | nted hand Oﬂ:, merkl e treeS, t| meStam p - Distributed transactions (I'll try to talk them out of this one)

- Compression support

CO nﬂ |Ct reSO| UtIO n. - Fine grained security via ACLs

It looks like a well engineered system.
~Jrh

James Hamilton, Data Center Futures

o J am e S H a m i |to n : ¢ I't | OO kS I i ke a Wel I Bldg 99/2428, One Microsoft Way, Redmond, Washington, 98052

W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | JamesRH@microsoft.com

.)
el l g I I l ee red SySteI ' | H:mvdirona.com | W:research.microsoft.com/~jamesrh | blog:http://perspectives. mvdirona.com
|

“Facebook Releases Cassandra as Open Source” - James Hamilton, Perspectives. July 2008.

Apache Cassandra
What Problem Are We Solving?

e Scale: 3 to 1500+ database instances.

* Availability: 99.999% common, 99.9999% achievable.

* Distribution: Active-Active across up to five regions. %
* Density: Databases up to ~2.5 PiB In size. Apache Cassandra
* Velocity: Millions of queries per second.

* Capability: Strong consistency, linearizable transactions.

What Worked Great

* Leaderless Architecture: No distinguished nodes.

 Equal latency across regions (no “primary”).
* Faults localized to replica/replica set rather than global.

@p

Apache Cassandra

* Avoids bottlenecks, gray-mode failures, election complications.

* Majority Quorum Design:

* P(Failure): Concurrent loss of replicas across failure domains.
* Enables striping replicas across rack / network / power domains.
* Fault domain-aware planning enables 99.9999% availability.

* Strong consistency via overlapping quorums, blocking read repair.

What Worked Great

* Leaderless Architecture: No distinguished nodes.

 Equal latency across regions (no “primary”).
* Faults localized to replica/replica set rather than global.

@p

Apache Cassandra

* Avoids bottlenecks, gray-mode failures, election complications.

* Majority Quorum Design:

* P(Failure): Concurrent loss of replicas across failure domains.
* Enables striping replicas across rack / network / power domains.
* Fault domain-aware planning enables 99.9999% availability.

* Strong consistency via overlapping quorums, blocking read repair.

Becoming a Database

User-Facing Features

K]
.
O]
*
Q-
----------- . enmmmmmE
*
=
n ¢
*
g
*

CQL Query Language Strong Consistency Single-Key New Storage Engine Spark / HTAP Integration
Secondary Indexes Transactions UDFs / UDAFs Distributed Transactions

Becoming a Database
Foundational Work: 2018 - 2022

e Quality Gap: “EC k/v” roots to “SC database” - new expectations.

 Property-Based Testing: Randomized input, validation by model checker.

1

* Simulation: Deterministic execution via managed executors / mutexes. !‘
AR I

 Upgrade Testing: Automating clone, upgrade, exhaustive validation.

 Rethinking Deprecation: Lose features, lose users.

* Rethinking Dynamo Concepts: What do we need to become?

Rethinking Dynamo Concepts
Forging New Paths

* Gossip: Membership and ownership as fundamentally transactional concerns.
 Eventual Consistency: Linearizabillity is tablestakes for modern applications.

* Anti-Entropy: Reducing overhead via immutability, invariants.

* Replication: Decoupling quorum size from replication via Witness Replicas.

 Smart-Client Routing: Limitations at 100k+ clients.

Distributed Transactions

Transactional Database, Dynamo Foundations

- Transact over any subset of keys in the database, including across tables.

— Support strict serializability: strongest level of isolation possible.

- Optimal latency: one WAN round-trip for all transactions under normal operation.

— Optimal fault tolerance: Latency and performance resilient to a minority of replica failures.
— Scalability: No single point of coordination or bottleneck introduced.

- Portability: No specialized hardware required.

Accord

Consensus Between Parliaments

 Leaderless Paxos: Similarities to EPaxos, Tempo, Caesar.

* Flexible Consensus Groups: Variable per-transaction.
 Hybrid Logical Time: Ordered execution w/dependencies.

* Single network round-trip: Low-latency for multi-region apps.

* Validation: Specified with formal proof, validated via simulation.

Paper located at https://is.gd/cassandra_accord

Draft Whitepaper for CEP-15: General Purpose Transactions

CEP-15: Fast General Purpose Transactions

Elliott Smith, Benedict Zhang, Tony Eggleston, Blake
benedict@apple.com nudzhang @umich.edu beggleston@apple.com

Andpreas, Scott

cscotta@apple.com

Abstract

Modern applications replicate and shard their state to achieve fault tolerance and scalable performance. This presents
a coordination problem that modern databases address using leader-based techniques that entail trade-offs: either a
scalability bottleneck or weaker isolation. Recent advances in leaderless protocols that claim to address this coordination
problem have not yet translated into production systems. This paper outlines distinct performance compromises entailed
by existing leaderless protocols in comparison to leader-based approaches. We propose techniques to address these
short-comings and describe a new distributed transaction protocol ACCORD, integrating these techniques. ACCORD is
the first protocol to achieve the same steady-state performance as leader-based protocols under important conditions
such as contention and failure, while delivering the benefits of leaderless approaches to scaling, transaction isolation
and geo-distributed client latency. We propose that this combination of features makes ACCORD uniquely suitable for
implementing general purpose transactions in Apache Cassandra.

1 Introduction

Modermn applications rely upon remote database services to ensure their state is durable and available to clients. To
provide these properties, modern databases partition their state into geo-replicated shards. This permits some tolerated
combination of failures to coincide without interrupting the service, while ensuring the database may scale to meet user
demand. However, a distributed coordination problem is introduced for transaction execution.

Real-world database systems address this by imposing restrictions on functionality or sacrificing performance.
Systems that offer transactions using Raft [34] or Multi-Paxos [21] are now common-place [4,13,14,16,29,36,42,44,47],
but most do not offer cross-shard transactions. These were first introduced by Spanner [8], but required specialised
hardware and multiple WAN round-trips. More recently, systems using commodity hardware have begun to catch up:
FaunaDB and FoundationDB offer strict-serializable isolation, but order transactions with a global leader process [14,47];
CockroachDB, YugaByte and DynamoDB avoid this bottleneck, but claim only serializable isolation [6,40,44]. Neither
group therefore achieves the optimal combination of isolation properties and scalability. Furthermore, being leader-
based these systems require additional wide area round-trips for clients that are not co-located with the leader, and for
transactions that involve keys whose leaders are not co-located.

Raft and Multi-Paxos confer some important properties though: they may assign their leader role to any healthy
process and require only a simple majority of votes, so they may suffer the loss of any minority of replicas and be able
to promptly restore their prior steady-state performance. Transactions that share leaders also do not suffer contention
penalties, and reads may be performed concurrently - they may even circumvent the leader entirely [23,31]. Leaderless
quorum-based protocols have been proposed [2,11,12,23,30,32,45] that utilise a fast-path to achieve optimal commit
latency under low contention, but these have not been used in real systems. We propose that this is in part explained by
their unpredictable performance under these same conditions.

In particular, these protocols have fast-path quorums that are disabled by fewer failures than are tolerated overall.
For example, Tempo [11] tolerates f failures using 2f + 1 replicas, but at most one replica may fail before its fast-path
is unable to reach decisions. Tapir [45] fares better, with a fast path that survives LgJ failures - but this is half as many
as it tolerates overall, and its optimistic concurrency control fails to guarantee forward progress for all transactions.

Leaderless Transactions
Why Paxos?

- “No distinguished nodes” harmonious with Cassandra’s architecture
— Transact from any region with predictable latency (unlike Multi-Paxos)
— No scalability bottleneck on a distinguished transaction authority

— Leaderless design avoids complications of elections and failover

- Leaderless enables single round trip, optimal latency

Paper located at https://is.gd/cassandra_accord

Comparing Implementations

Scale

Petabytes

CockroachDB Terabytes

DynamoDB Petabytes
Spanner Petabytes

Cassandra (2013) Petabytes

Cassandra (2022) Petabytes

Isolation

Serializable

Serializable

Strict

Serializable

Linearizable

Linearizable

Strict

Serializable

Paper located at https://is.gd/cassandra_accord

Multi-
Cloud

Leaderless

Single Key Multi Key
Round-Trips Round-Trips
Local Remote Local Remote

Read Write

Read Write

Read Write Read Write

2-3 2-3

NA NA

0.5 2-3

NA NA

New Possibilities

Distributed Transactions Let Us...

* Rethink Indexes: Transactional insert into base table and derived table.
* Rethink Materialized Views: Transactional insert into base, derived table.
* Rethink Denormalization: Enable enforcement of Foreign Key relationships.

* Rethink MVCC: Transactional versioning as a primitive to implement multi-
version concurrency control, snapshot isolation.

* Rethink Non-Relational: FK relationships, snapshot isolation, ordered
partitioning — cross-table joins.

* Rethink a Dynamo-derived system as a transactional database.

Figure I.1 The Impact of Sustaining and Disruptive Technological Change

Performance
demanded at the high
end of the market

Performance
demanded at the low

Disruptive ™\
end of the market

technological
innovation

®
O
-
T
£
—
O
) -
@
o
O
3
T
O
-
o

The Innovator’s Dilemma - Clayton M. Christensen. Harvard Business Review Press, 1997 - p. 16

Figure 2.5 The Conventional Technology S-Curve

Third technology

Q
Q
e
®
=
-—
O
) —
Q
Q.
-—
Q
=
L*
O
—
Q.

Second technology

First technology

Time or Engineering Effort

The Innovator’s Dilemma - Clayton M. Christensen. Harvard Business Review Press, 1997 - p. 78

Building on Dynamo’s Legacy

Becoming a database that can...

* Serve petabytes of data and millions of queries/second at
99.9999% availability.

* Run active-active across up to 5 regions.

 Run in any datacenter or public cloud without specialized hardware.

* EXxecute leaderless transactions across the entirety of the database
from any region.

 Be downloaded, learned from, and modified by anyone.

Dynamo at 15

What Worked and What’s Next in Majority-Quorum Databases

C. Scott Andreas, Apple Inc.
HPTS 2022 — Pacific Grove, California

