
C. Scott Andreas, Apple Inc.

HPTS 2022 – Pacific Grove, California

Dynamo at 15
What Worked and What’s Next in Majority-Quorum Databases

Outline

• A look back at Dynamo ca. 2007

• Apache Cassandra’s journey as a Dynamo-derived database

• What stood the test of time?

• What needed revisiting?

• What’s new and what’s next in majority-quorum databases?

Apache Cassandra

Landscape in 2007

Hardware Operating Systems Databases

Intel Penryn (45nm) Linux 2.6.2 MySQL 5

First 1TB HDD 
(250GB common) Windows Vista SQL Server 9

~32-64 GB Max RAM 
(Major manufacturers) Mac OS X 10.5 Postgres 8.2

SATA 2.6 
Slim Connector Solaris 10 Oracle 11g

Consistent 
Hashing

Eventual 
Consistency

Google Trends - “Eventual Consistency” and “Consistent Hashing,” accessed Sept 30, 2022.

November 2007

“A Highly Available Key-Value Store”

• Leaderless architecture

• Incremental scalability

• API: get(key), put(key, context, bytes)

• Availability as paramount (99.999%+)

• Aggressive Latency SLA (focus: 99.9th percentile)

Prioritizing …

“A Highly Available Key-Value Store”

• Query Language

• Query Planner / Optimizer

• Transactions

• Indexes

• MVCC / Snapshot Isolation

• Rich Data Types

• Aggregations

• Views

• Functions / Procedures

• Storage engine (pluggable)

Without …

What is a database?

The Innovator’s Dilemma - Clayton M. Christensen. Harvard Business Review Press, 1997 - p. 16

Apache Cassandra
As Introduced

• First release coauthored by coauthor of
Dynamo paper, then at Facebook. LSM
storage engine engine, majority-quorum
architecture.

• OSS’d in 2008, ASF incubation 2009, 
top-level project 2010.

• Dynamo Concepts - Huge overlap:  
Consistent hashing / DHT, tunable consistency,  
gossip, hinted handoff, merkle trees, timestamp  
conflict resolution.

• James Hamilton: “It looks like a well
engineered system.”

“Facebook Releases Cassandra as Open Source” - James Hamilton, Perspectives. July 2008.

Apache Cassandra
What Problem Are We Solving?

• Scale: 3 to 1500+ database instances.

• Availability: 99.999% common, 99.9999% achievable.

• Distribution: Active-Active across up to five regions.

• Density: Databases up to ~2.5 PiB in size.

• Velocity: Millions of queries per second.

• Capability: Strong consistency, linearizable transactions.

Apache Cassandra

What Worked Great

• Leaderless Architecture: No distinguished nodes.

• Equal latency across regions (no “primary”).

• Faults localized to replica/replica set rather than global.

• Avoids bottlenecks, gray-mode failures, election complications.

• Majority Quorum Design:

• P(Failure): Concurrent loss of replicas across failure domains.

• Enables striping replicas across rack / network / power domains.

• Fault domain-aware planning enables 99.9999% availability.

• Strong consistency via overlapping quorums, blocking read repair.

Apache Cassandra

What Worked Great

• Leaderless Architecture: No distinguished nodes.

• Equal latency across regions (no “primary”).

• Faults localized to replica/replica set rather than global.

• Avoids bottlenecks, gray-mode failures, election complications.

• Majority Quorum Design:

• P(Failure): Concurrent loss of replicas across failure domains.

• Enables striping replicas across rack / network / power domains.

• Fault domain-aware planning enables 99.9999% availability.

• Strong consistency via overlapping quorums, blocking read repair.

Apache Cassandra

Becoming a Database
User-Facing Features

2011 2013 20152012 2022-3

CQL Query Language

Secondary Indexes

Strong Consistency Single-Key 
Transactions

New Storage Engine 
UDFs / UDAFs

Spark / HTAP Integration 
Distributed Transactions

• Quality Gap: “EC k/v” roots to “SC database” - new expectations.

• Property-Based Testing: Randomized input, validation by model checker.

• Simulation: Deterministic execution via managed executors / mutexes.

• Upgrade Testing: Automating clone, upgrade, exhaustive validation.

• Rethinking Deprecation: Lose features, lose users.

• Rethinking Dynamo Concepts: What do we need to become?

Becoming a Database
Foundational Work: 2018 - 2022

• Gossip: Membership and ownership as fundamentally transactional concerns.

• Eventual Consistency: Linearizability is tablestakes for modern applications.

• Anti-Entropy: Reducing overhead via immutability, invariants.

• Replication: Decoupling quorum size from replication via Witness Replicas.

• Smart-Client Routing: Limitations at 100k+ clients.

Rethinking Dynamo Concepts
Forging New Paths

– Transact over any subset of keys in the database, including across tables.

– Support strict serializability: strongest level of isolation possible.

– Optimal latency: one WAN round-trip for all transactions under normal operation.

– Optimal fault tolerance: Latency and performance resilient to a minority of replica failures.

– Scalability: No single point of coordination or bottleneck introduced.

– Portability: No specialized hardware required.

Distributed Transactions
Transactional Database, Dynamo Foundations

Accord
Consensus Between Parliaments

• Leaderless Paxos: Similarities to EPaxos, Tempo, Caesar.

• Flexible Consensus Groups: Variable per-transaction.

• Hybrid Logical Time: Ordered execution w/dependencies.

• Single network round-trip: Low-latency for multi-region apps.

• Validation: Specified with formal proof, validated via simulation.

Paper located at https://is.gd/cassandra_accord

– “No distinguished nodes” harmonious with Cassandra’s architecture

– Transact from any region with predictable latency (unlike Multi-Paxos)

– No scalability bottleneck on a distinguished transaction authority

– Leaderless design avoids complications of elections and failover

– Leaderless enables single round trip, optimal latency

Why Paxos?
Leaderless Transactions

Paper located at https://is.gd/cassandra_accord

Scale Isolation Multi-
Cloud Leaderless

Single Key
Round-Trips

Multi Key
Round-Trips

Local Remote Local Remote
Read Write Read Write Read Write Read Write

CockroachDB Terabytes Serializable ! " 1 1 2 2 1 1 2-3 2-3

DynamoDB Petabytes Serializable " " 1 1 2 2 1 1 NA NA

Spanner Petabytes Strict
Serializable " " 0.5 1 0.5 2 0.5 1 0.5 2-3

Cassandra (2013) Petabytes Linearizable ! ! 2 4 2 4 NA NA NA NA

Cassandra (2022) Petabytes Linearizable ! ! 1 2 1 2 NA NA NA NA

Cassandra (2023) Petabytes Strict
Serializable ! ! 1 1 1 1 1 1 1 1

Comparing Implementations

Paper located at https://is.gd/cassandra_accord

New Possibilities

• Rethink Indexes: Transactional insert into base table and derived table.

• Rethink Materialized Views: Transactional insert into base, derived table.

• Rethink Denormalization: Enable enforcement of Foreign Key relationships.

• Rethink MVCC: Transactional versioning as a primitive to implement multi-
version concurrency control, snapshot isolation.

• Rethink Non-Relational: FK relationships, snapshot isolation, ordered
partitioning → cross-table joins.

• Rethink a Dynamo-derived system as a transactional database.

Distributed Transactions Let Us…

The Innovator’s Dilemma - Clayton M. Christensen. Harvard Business Review Press, 1997 - p. 16

The Innovator’s Dilemma - Clayton M. Christensen. Harvard Business Review Press, 1997 - p. 78

Building on Dynamo’s Legacy

• Serve petabytes of data and millions of queries/second at
99.9999% availability.

• Run active-active across up to 5 regions.

• Run in any datacenter or public cloud without specialized hardware.

• Execute leaderless transactions across the entirety of the database
from any region.

• Be downloaded, learned from, and modified by anyone.

Becoming a database that can…

C. Scott Andreas, Apple Inc.

HPTS 2022 – Pacific Grove, California

Dynamo at 15
What Worked and What’s Next in Majority-Quorum Databases

