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Connecting the dots:
Evolution and 
Revolution on the way 
to the Cloud
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Evolution
Many smaller databases

Migrating existing workloads

Evolve existing RDBMS engines

Two approaches circa ~2002

Revolution
Fewer massive databases

Newer, transformative workloads

Scale over relational semantics

What changed in the  last ~20 years  ?



Databases: Evolution and Revolution 
Google Cloud SQL 

● Control planes to manage RDBMS
● Hosted in commodity VMs
● Backed by generic block storage

Google AlloyDB

● Database-optimized storage 
● Offload IO, improve costs/latency
● Compute / Storage separation

Google Bigtable

● Partition for scale, solve IR problems
● NoSQL/KV instead of xact, relational, SQL
● Compute / Storage separation

Google Spanner
● Global cross-partition transactions
● Full ANSI SQL, relational semantics
● Compute / Storage separation



Data Warehouses: Evolution and Revolution 
Hoist MPP DW to Cloud

● Control planes on MPP RDBMS
● Storage co-located with compute
● Data partitioning usually “sticky”

Cloud MPP

● Compute / Storage separation
● Autoscale compute
● Data planes still use MPP RDBMS

Dremel: “Online Map Reduce”

● Build for scale
● Forgo relational/SQL semantics
● Flex compute shape thru containers
● Compute / Storage separation

BigQuery
● Full ANSI SQL support 
● Enterprise security and governance
● Serverless relational data warehouse
● Compute / Storage separation



Proprietary + Confidential

Key Takeaways 
Did anybody say “separation of compute and storage” ??

Cross-pollination of ideas is great for our community
● Differing motivations have driven continuous innovation
● The worlds of “revolution” and “evolution” are now converging

New opportunities 
● Cloud customers demand more integrated services 
● Analytics and Transactional systems can leverage each other 

Google’s unique approach is highly differentiated: 
● Build infrastructure at unprecedented scale
● Reuse with external and internal customers 



Thank you



Adrian Cockcroft - OrionX.net
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Petalith
Memory is the treasury and guardian of all 
things - Cicero



What is 
big data?

Data that doesn’t fit in memory on one machine

Currently about 24 TB



Biggest Memory Sizes Trend
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What limits 
speedup?

Amdahl’s Law – the serial portion of a workload

In a distributed system The Communication

"the overall performance improvement gained by optimizing a single part of a system is 
limited by the fraction of time that the improved part is actually used” – Gene Amdahl - 
1967
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EC2 UltraClusters (2022)
10000+ Trainium GPUs on 800GBit links into petabit scale fabric 



Gigabytes/s
bandwidth
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Memory capacity vs. bandwidth

Engulf your data 
in memory to 
reduce 
overhead, if it 
fits 

UltraCluster 10000+ 
Trn1 

800Gbit Ethernet
Network bandwidth 

per node

AWS u24-tb1
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Cascade Lake
Main memory 
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How do we 
communicate?

By encoding transmitting receiving and decoding

How do we do it? Really inefficiently!



Send an email with an idea and wait

Friday

                                                  

SaturdaySundayMonday



A bit better? Direct  Conversation (e.g. at HPTS)
Including eye contact and body language protocols

I’ve got this idea about 
really big memory 

systems. What do you 
think of it….?

Cool, how does it work in 
this situation.?



How do systems 
communicate?

By encoding transmitting receiving and decoding

How do systems do it? Really inefficiently!



Typical containerized microservice call pattern
Every step makes a new copy of the message

JSON
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VM
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Shortcut the network

JSON
Encode
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Proxy
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Use Memory as the Network
(no app code changes)

JSON
Encode

Envoy
Proxy

Create
Message

JSON
Decode

Envoy
Proxy

Use
Message



Use Memory as the Network
(Repackaged container sidecar)

JSON
Encode

Create
Message

JSON
Decode

Use
Message

Shared 
Memory



Use Memory as the Network
(No need to encode/decode)

Create
Message

Use
Message

Shared 
Memory



IN 2023 OR SO…
Large scale system

New memory hierarchy to manage
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Petabyte scale
architecture
replicates data
THREE WAYS
for durability
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IN 2022 OR SO…
Large scale system
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Petabyte scale
architecture

replicates data
SIX WAYS

for resilience

Across three 
availability zones 

– like Aurora

Petabyte scale
architecture
replicates data
THREE WAYS
for durability

Via a local switch 
for lowest latency 
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What is the right operating system 
architecture to support this?

What is the right way to integrate
and operate cloud services?

What is the right way to construct
a petabyte scale application?

When will we enter the petalithic era?

Questions

Petalith



Research
I want to encourage a research project that 
will end up as a cross-industry open source 

initiative like Tensorflow or Kubernetes

THIS IS A
TEASE

RI have a lot more ideas

I have been thinking
about this for

10+
YEARS Petalith



THANK 
YOU



Unavoidable Trade-offs of 
Distributed Storage Systems in 

the Cloud

Aleksey Charapko
University of New Hampshire

32



What Systems Do we Want?

- Performant
- Efficient
- Reliable
- Maintainable
- Secure
- …



Design Tradeoffs

Something must give 
when one design 
consideration is in 
higher priority.



Metastable Failures 



Metastable Failures 



Metastable Failures 



Metastable Failures 



Tradeoffs Examples in Metastable Failures

- Running too close to capacity leaves no “wiggle” room to handle 
triggers

- Aggressive timeouts & retries to minimize latency on transient 
failures

- High performance gradients -- over optimized common path to the 
detriment of the exception path



The Compiler Is the 
Database

Bruce Lindsay
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Firestore: The NoSQL 
Serverless Database for the 

Application Developer

Ram Kesavan
Google
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SNL sketch 
10/1/2022

http://www.youtube.com/watch?v=yzeH4BBxDew&t=41
http://www.youtube.com/watch?v=yzeH4BBxDew&t=41


Proprietary + Confidential

Serverless Use Case: Extreme Edition

● BeReal
○ Negligible traffic for much of the day
○ Everyone (in a continent) is notified together
○ Everyone uploads their picture in the next 2 min
○ And you view/comment on your friends’ pictures

● A how-to (blog link)
○ Created a POC prototype using Google Cloud
○ Simplified auth, storage, notifications, etc.
○ Firestore is the backing database
○ Serverless scale-out and pricing

https://cloud.google.com/blog/topics/startups/bereal-creates-reality-based-social-media-using-google-cloud


Proprietary + Confidential

Firestore: NoSQL Serverless Database

● Firebase client-side SDK libraries
○ Greatly simplifies coding for the app developer
○ Maintains an on-device cache to hide latency to Firestore
○ Offline access reduces to a variant of the default case

● Strong consistency is simpler to code to
○ Spanner storage: ACID semantics, availability, reliability, and scaling
○ Notification stack: updates to continuous queries from each mutation
○ Pay as you use pricing with a (daily) free-tier

● Highly popular
○ 250k+ monthly active application developers
○ 3.5m+ databases have been created
○ Powers 1B+ monthly active end-users



Ballerina in the House
An open-source programming language for network services

Eric Newcomer, CTO

October, 2022



Integration is 
programming, but… 

A visual representation of integration logic is important 
to communicate with business users.

Domain specific languages (DSLs) have dominated 
because they provide the right abstractions for 
integration programming, albeit with limitations when it 
comes to “regular code” parts of the problem.

Integration programming has lost software engineering 
best practices because it lives in a closed universe.

Picture credits: AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/integration-programming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


import ballerina/http;

configurable int port = ?;

type Country record {
   string country;
   int population;
   int cases;
   int deaths;
};

service / on new http:Listener(port) {
   resource function get countries() 

returns Country[] {
   }

   resource function get countries/[string country]() 
returns Country | http:NotFound {

   }

   resource function post 
countries(@http:Payload Country country) 
returns Country {

   }
}

● Application defines service objects and attaches 
them to Listeners

● Libraries provide protocol-specific Listeners, which 
receive network input and dispatch to service objects

● Service objects support two interface styles
○ remote methods, named by verbs, support RPC style

○ resources, named by method (e.g. GET) + noun,  support 
RESTful style (used for HTTP and GraphQL)

● Types of service objects methods can used to 
generate interface descriptions e.g. OpenAPI, GraphQL

● Annotations on service objects enable easy cloud 
deployment

Produces network services



import ballerina/http;

public function main() returns error? {
   http:Client diseaseData = 
       check new (openDiseaseDataURL);
   Country[] countries = 
       check diseaseData->get("/countries");
}

● Key enabler for sequence diagram view of network 
interactions

● Outbound network interactions represented by 
client objects

● Client objects have remote methods that represent 
outbound interactions with a remote system

● Distinct syntax for calls remote method

● Syntax restrictions make it possible to create a 
sequence diagram for any function

Consumes network services



// Describes both the payload on the wire
//   and data in memory
type Country record {
   string country;
   int population;
   int cases;
   int deaths;
};

public function main() returns error? {
   http:Client diseaseData = 
       check new (openDiseaseDataURL);
   Country[] countries = 
       check diseaseData->get("/countries");
}

● Object-orientation bundles data with code: wrong 
approach for network interaction

● Ballerina emphasizes plain data - data that is 
independent of any code used to process the data

● Ballerina provides objects for internal interfaces, 
but is not object-oriented

● Ballerina’s plain data maps straightforwardly to and 
from JSON

● Native data types for XML and JSON

Data oriented



Example service & resource syntax with primitives for sequence diagram 
import ballerina/http;

var clientObj = client object {
    resource function get greeting/[string name]() returns string {
        return "Hello, " + name;
    }

    resource function post game/[string name]/[int players]() returns string 
{
        return name + ": " + players.toString();
    }
};

public function main() {
    string name = "Mark";
    string result = clientObj->/greeting/[name];
    // Will print Hello, Mark
    io:println(result);

    [string, int] gameDetails = ["Chess", 2];
    result = clientObj->/game/[...gameDetails].post;
    // Will print Chess: 2
    io:println(result);
}



51

Sequence diagram and code - with round trip - in VS Code 



“Swan Lake” Release Feb 2022 

● GA quality - completion of long beta for new cloud features
● VS Code plugin enhanced for graphical code editing

⦿ Edit code -> generate sequence diagram
⦿ Edit sequence diagram -> generate code
⦿ Full round tripping

● Code to cloud syntax CL
⦿ Generate Docker files
⦿ Generate Kubernetes config

● Extended distributed API programming model
⦿ Open API (Swagger)
⦿ gRPC
⦿ AsyncAPI

● WSO2 Choreo PaaS product built using Ballerina Swan Lake



nBallerina

● Cross compilation to native binaries via 
LLVM

● Toolchain will be shared initially (compiler 
front-end still in Java) but fully 
bootstrapped soon

● Provides a C FFI

● ETA: (soon?!?)

jBallerina

● Toolchain written using Java

● Compiles to Java bytecodes and runs 
on a JVM

● Provides Java interoperability

● Current  production version

Ballerina by Example 

Ballerina implementations

53

https://ballerina.io/learn/by-example/


Upcoming features   

54

● Persistence abstraction 
● Long running transactions
● Workflow
● Data mapping tool (transformation)
● Domain services ->

○ gRPC inside the “domain”
○ HTTPS externally 



Thanks! 

Further info:

ballerina.io
choreo.io

55



Building to Buy

Joshua Leners
Two Sigma

56



About me

Apostate systems researcher

Engineer at Two Sigma

2nd HPTS



Build vs Buy



Everything changes

Keep building

Keep buying

Give up



Two Sigma - 2005

Can’t buy S3, HDFS, Cassandra, but we 
can read GFS paper

We can buy expensive appliances

Choice: Build our own (CelFS)



Two Sigma - 2015

Can’t buy cloud services (connectivity 
on the roadmap)

What is Celfs good at?

What is it bad at?



Two Sigma 2020

Can buy cloud 🎉

But our users have built to our APIs

And our users have built to our performance profile



What we’ve learned

We’re all buying, and it’s more like subscription than not

Good integration skills are powerful



Déjà vu in OS Isolation

Sid Agrawal
University of British Columbia
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Isolation over Time
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Resource Isolation Is a spectrum
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Problems with current scenario

• Isolation is incremental, but the implementation is not
– Increases the engineering cost
– More bugs
– Not everyone can afford to do this

67



Problems with current scenario

• No holistic view of the isolation
– What is the level of isolation provided by a 

mechanism?
– How to specify the desired level of isolation?
– Too much isolation leads to poor performance.
– Too less isolation leads to security vulnerabilities.

68
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OSMosis
Identify Resources

Fine-grained 
Access Control

Enable Discovery of 
new abstractionsExpress Existing Mechanisms



Osmosis: Two Parts

70

Protection Domain

CPU Memory Devices

 
Realize with a Framework

Use Capabilities to enable delegation and 
revocation of fine grained resources

Precisely Defining what is shared (or not)
• Physical Resources
• Virtual Resources
• Underlying State (Kernel/VMM state)

Model Sharing and Isolation



71

OSmosis Framework
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Original PD

CPU Memory Devices
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OSmosis Framework
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Original PD

CPU Memory Devices
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New PD

CPU Memory Devices
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k-
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Threads 
with Isolated 

Stacks
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Open Questions

73

Shared 
capabilities or 
only copied 
capabilities?

How does our design 
change if we use 

something like CHERI?

Is seL4 the right 
substrate for this 

work?



Context-Mediated Transactions 
and Disaggregated Memory

Pankaj Mehra
Elephance Memory
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Our Large Context is a Flower of 7-19 dims unrolled in time
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1995
McCarthy

Facts and 
Rules that 
axiomatize 
a situation 
and help us 
reason

Context as 
Ontology

Reasoning

2010
Dey,Cooke

Context as 
Ontology

Cyber-
physical

Context 
Engines for 
eCommerce 
& 
Advertising

2025
EKG

Context 
Graphs

Petabyte 
scale

In-Memory

Index-Free 
adjacency

Graph [Databases] deliver contextualization to support new digital transformation initiatives… because messy 
data without context can dramatically slow down the AI process. Noel Youhana (Forrester) April 21, 2021

Search → Page Rank, RW
Data: Crawled Content [GBs]

Recomm → Subgraph Isomorphism
Data: Users, Products Entities [TBs]

IPAs→ WSD
Data: Sound, Speech 10s TB

Fraud → 
TBs/d x 30-90 d

Hadoop RDF Triple Store In-Memory Relational In-Memory Graph DB & DNN



Context Graphs
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Example. Whodini (‘10-13): Work Context extracted from email/calendar by applying Speech Act Theory + 47 algorithms against 
210M data points / person / year from the 600,000 words each of us write every year!

Helped to disambiguate words like next iteration by 
contextualizing and context-clustering on graphs of 
Who said what to whom, when



Memory too is evolving in response to PB-scale use cases
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Disaggregated Memory Node

runs here

to manage this memory

Device-Side MemOS™ 

Global pointers allows subgraphs
to be created and manipulated

as memory objects
at xPUs and devices

APIs and Language Bindings on the Hosts
allow graph functions (such as convolve @N1) 
to be defined and shipped to the device as 
easily as operating on that graph data from far 
memory locally .
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Efficient 
RPC

Flexible 
Placement

Persistent 
Pointers

Independent 
Scaling

Twizzler.io and UCSC

CX
L 

w
or

k 
w

ith
 M

em
or

y 
In

du
st

ry

Security features for Arm
 CH

ERI

Elephance MemOS™
is a fork of Twizzler

Extreme relevance 
of pointers for 
near-memory 

processing

Protecting 
disaggregated memory 
against attacks & leaks 

beyond
“Mother May I?” 

relationship between 
memory & server

Continued Collaboration



MemOS™ offloads MI graph operations from CPUs, GPUs 
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Convolution in CNN

Far Memory without MemOS Far Memory with MemOS

CPU chases pointers,
Retrieves neighbor node,
Retrieves local property,
Calculates filter polynomial

DMN chases pointers,
Retrieves neighbor node,
Retrieves local property,
Calculates filter polynomial
Returns convolved values

Many RTTs,
Low goodput,

Cache pollution,
NW flooding,

Rule of 3 penalty

Low latency,
High goodput,

Independent scaling

MI Operations

Pointer chasing

Convolution →

Clustering

In-DB ML Inf Op

Page Rank / RW

Connected Comps

Search-Accumulate

Shortest Paths

Filter-Aggregate

Compression



The Elephant in the Room

George Neville-Neil
Elephance Memory
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The Good

• Provides a consistent 
programming paradigm

• Led to unprecedented increase 
in the amount of software

• Better than the fragmented 
world of the 1960s-1970s

• Relatively open 
• (some caveats apply, void where prohibited, do not 

stick in ear.)



The Not So Good

• Plumbing is too visible

• Hidden assumptions

• Narrows thinking about how we 
program

• Twists systems to be more like 
itself.

• A drag on innovation.



Thoughts to Consider

• How do current computers 
actually work?

• What do current programmers 
really want?

• What other models are 
possible?

• Data Oriented Programming

• Re-think the plumbing
• Don't just hide it



BigQuery in 4 minutes and 
30 seconds

Justin Levandoski
Google
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BigQuery
A serverless, highly scalable, and cost-effective cloud data warehouse

Petabyte-scale 
storage

and queries

Encrypted, durable

Real-time analytics on 
streaming data

Fully managed, 
serverless, clusterless

24/7 Service with > 
99.99% uptime

Predictable 
Performance

Integrated ML Easy to use SQL 
without hints



“BigQuery was serverless before serverless was a thing.”

-Mosha Pasumansky



BigQuery Architecture

SQL:2011
Compliant

Petabit Network

BigQuery High-Available Cluster 
ComputeStreaming 

Ingest and 
Read

Bulk
 Load and 

Export

Replicated, Distributed 
Storage

REST API

Client 
Libraries

In 7 
languages

Web UI, CLIDistributed 
Memory Shuffle 

Tier



Google Infrastructure



“Serverless” Design Principles and Advantages

● Disaggregation of compute, storage, memory
○ On-demand scaling of each resource

○ On-demand sharing of resources

○ Adapts well to multi-tenant usage at lower cost

● Fault tolerance and restartability
○ At scale assume everything is unreliable/slow

○ Query subtasks are deterministic and repeatable

○ Multiple copies of same task dispatched to avoid stragglers



In Memory Shuffle 

● BigQuery implements a disaggregated memory-based shuffle
○ RAM/disk managed separately from compute tier
○ Reduced shuffle latency by order-of-magnitude
○ Enables order-of-magnitude larger shuffles
○ Reduced resource cost by 20%
○ Avoid resource fragmentation, stranding, poor isolation

● Persistence in shuffle layer
○ Checkpoint query execution state
○ Allows flexibility in scheduling + execution (preemption of workers)



Dynamic Scheduling

time

slots
Available slots

1000

2000

Query 4

Query 1

Query

Query 5

Query 2

Query 3

Query 4 needs less resources

Query 5 is submitted

Query 4 finishes



Dynamic Query Execution

“[Optimizers] are 
making assumptions 
about joins five or 
six levels up in the 
tree based on just 
wishful thinking.”

● Dynamic (Re)Partitioning: load balance and adjust parallelism while 
adapting to any query or data shape and size 

● Dynamic join processing:
○ Example – start with shuffle join, but cancel and switch to 

broadcast join if data sizes warrant it



Read / Write API + Streaming

● Read API

○ Read data in parallel directly from BQ storage

○ For consumption by Spark, Presto, Tensorflow, etc, etc…

● Write API

○ Industry-leading stream ingest support at scale

○ Exactly once semantics

○ Stream-level and cross-stream transactions







BigQuery Omni



BigQuery ML

Classification
Logistic regression

DNN classifier (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Regression
Linear regression

DNN regressor (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Other Models
k-means clustering

Time series forecasting

Recommendation: 
Matrix factorization 

Model Import/Export
TensorFlow models for 
batch and online 
prediction 



Unstructured Data

SELECT * FROM

  ML.PREDICT(MODEL cat_detector, 

    SELECT _HANDLE FROM dataset1.images

    WHERE ENDSWITH(filename, 'jpg') 

    AND create_time > TIMESTAMP('2021-1-1')

  )

CREATE TABLE dataset1.images 
WITH CONNECTION 'service_account1'
OPTIONS (uris=['gs://mybucket/*'])

filename create_time generation …

image1.jpg 2021-11-04 2rba7gbp0

image2.jpg 2021-11-05 gbp02rba7

image3.jpg 2021-11-06 p02rbgbgb



The Sugar-free Chocolate of 
Databases

Matt Butrovich
Carnegie Mellon University

#1 Ranked CMU-DB PhD Student



Eating Smarter

Food labels in the US are wild.
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Staring at DBMS Traces



Zero Calorie Queries

● 1,462,909 queries from various workloads…
● CMDBAC data set shows that they are

27% of all queries!

● Look in your SQL logs and you’ll see these queries over and over again!
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DBMS Proxies to the Rescue

● PgBouncer, RDS Proxy, ProxySQL
● Features:

○ Connection pooling
○ Query rewriting
○ Sharding
○ Query caching
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What I Do

● Tigger is a proxy that pushes Application Layer (i.e., L7) DBMS protocol logic 
into kernel-space via eBPF.

● Perform things like transaction pooling and workload replication without ever 
going to user-space. User-bypass.
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I am graduating in early 2024.
I will be expensive to hire.

https://mattbutrovi.ch



Mehul A. Shah
mehul@aryn.ai
www.linkedin.com/in/mehulashah/
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Coming out of Codd’s shadow 
– search on unstructured data

mailto:mehul@aryn.in


The Zeitgeist 
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● Unstructured data abounds in enterprises
○ growing 3X faster than structured
○ non-consumption: 90% of this data is “dark”

● Data lakes are all the rage
○ lots of attention on structured
○ docs, audio, images, videos, logs, genomes, …
○ don’t know what I have, where it is, and how to synthesize it

● I’ve been under a rock for 5 years
○ new large (transformer) models can … speak English, feed my dogs …
○ 10x / year parameter growth - disrupted overnight
○ open source - download 10GBs from internet



The brilliance of Codd …
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1970s

relational model
relational calculus 
(first-order logic)

relational 
algebra

separate app from technology growth
lasted 50 years, 10^10X

what about unstructured data?

map data intoqueries in



Out of Codd’s shadow …
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2020s

keywords
natural language

image search
recommendations

?
transformer learns the data and the queries

can we understand them? is there an algebra?
what happens for the next 50 years?

public data 
modeled in

queries in

alphabet soup of 
LLM - transformers



Stop Losing Sleep 
Over Losing Data

Doug Terry
Amazon Web Services
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Customers increasingly fret about

1. Data loss

2. Region failures















Asynchronous
log



log



What can we 
do about 

RPO?



Option 1: Accept it

log

Region A

log

Region B



Option 1: Accept it

log

Region A

log

Region B

Replication



Option 2: Reconcile it

 

Leader Board

Frank

Julie 

Sarah   

KIller

Barry

Region A



Option 2: Reconcile it

 

Leader Board

Frank

Julie 

Sarah   

KIller

Barry

Region A Region B

Leader Board

Frank

Spike 

Julie   

Sarah

Barry



Option 2: Reconcile it

 

Region A Region B

Replication Leader Board

Frank

Spike 

Julie   

Sarah

Barry

Leader Board

Frank

Julie 

Sarah   

KIller

Barry



Option 3: Prevent it



What to do about RPO?

Option 1: Accept it

Option 2: Reconcile it

Option 3: Prevent it



PREVENT  RPO



Thank you!
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