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Two approaches circa ~2002

Evolution ~ Revolution

Fewer massive databases
Many smaller databases

) ) - Newer, transformative workloads
Migrating existing workloads

isti i le over relational semantics
Evolve existing RDBMS engines Scale

What changed in the last ~20 years ?

Google Cloud



Databases: Evolution and Revolution

/Google Cloud SQL A

e Control planes to manage RDBMS
e Hosted in commodity VMs
\_® Backed by generic block storage J

U

: N
Google AlloyDB

e Database-optimized storage
e Offload IO, improve costs/latency

e Compute /Storage separation

\ /

/Google Bigtable

e Partition for scale, solve IR problems

\_® Compute / Storage separation

e NoSQL/KV instead of xact, relational, SQL

~

/

/
Google Spanner

e Global cross-partition transactions
e Full ANSI SQL, relational semantics
e Compute/Storage separation

(&

~

)




Data Warehouses: Evolution and Revolution

Hoist MPP DW to Cloud "\ (Dremel: “Online Map Reduce”
e Control planes on MPP RDBMS e Build for scale
0 SIS CE-IOBEIEEl Wl SEIpIiE e Forgo relational/SQL semantics
o Data partitioning usually “sticky e Flex compute shape thru containers
K / \_ ® Compute/Storage separation

$ G

-
Cloud MPP BigQuery

Full ANSI SQL support

e Compute /Storage separation Enterprise security and governance
e Autoscale compute Serverless relational data warehouse
o Data planes still use MPP RDBMS & Compute /Storage separation




Key Takeaways

Did anybody say “separation of compute and storage” ??

Cross-pollination of ideas is great for our community
e Differing motivations have driven continuous innovation
e The worlds of “revolution” and “evolution” are now converging

New opportunities
e Cloud customers demand more integrated services
e Analytics and Transactional systems can leverage each other

Google’s unique approach is highly differentiated:
e Build infrastructure at unprecedented scale
e Reuse with external and internal customers



Thank you




Petalith

Memory is the treasury and guardian of all
things - Cicero

Adrian Cockcroft - OrionX.net
HPTS 2022




What is
big data?

Data that doesn’t fit in memory on one machine

Currently about



Terabytes
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What limits
speedup?

Amdahl’s Law - the serial portion of a workload

In a distributed system

"the overall performance improvement gained by optimizing a single part of a system is
limited by the fraction of time that the improved part is actually used” — Gene Amdanhl -
1967



NETWORKING
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EC2 UltraClusters (2022
10000+ Trainium GPUs on 800GBIt links into petabit scale fabric

EC2 UltraClusters

[ FSXQ\

Scalable low
latency storage Petabit-scale non-blocking network infrastructure

4,000+ NVIDIA A100 GPUs 2| 400 Gbps Elastic Fabric
Adapter (EFA)

-———

Petabytes per
second
throughput,
billions of IOPS

B/s Bidirectional NVIDIA NVSwitch Bandwidth

8 NVIDIA A100 GPUs NVIDIA GPUDirect over EFA with OS bypass 8 NVIDIAA100 GPUs




Memory capacity vs. bandwidth

Gigabytes/s
bandwidth
Single
NVIDIAA100
10.000 1.2TByte/s
, AWS p4dde GPU memory
Bx NVIDIAA100 Engulf your data
UltraCluster 10000+ NVLINK 600GByte/s @ -
Trn1 GPU memory
1,000 800Gbit Ethernet @ \@ In memo ry to
Network bandwidth r\ rn1
I per node @ 16x 32GB red U Ce
100 @ AWS w1 GPU memory h d .f .t
Uzsa- NeuronLink
8x Intel 768GBytes/s overhea I L
10 Cascade Lake =
Main memory fltS
1 I o

5,120,000GB  24,000GB 640GB  512GB 80GB
Memory capacity



How do we
communicate?

By encoding transmitting receiving and decoding

How do we do it?



Send an email with an idea and wait




A bit better? Direct Conversation (e.g. at HPTS)
Including eye contact and body language protocols

I've got this idea about

Cool, how does it work in

really big memor y this situation.?
systems. What do you

think of it....?




How do systems
communicate?

By encoding transmitting receiving and decoding

How do systems do it?



Typical containerized microservice call pattern
Every step makes a new copy of the message

Network
Switch

JSON JSON
Encode Decode

Create Use
Message Message




Shortcut the network

JSON JSON
Encode Decode |

Create Use
Message Message




Use Memory as the Network
(no app code changes)

B3

JSON

JSON

Encode Decode

Use
Message

Create
Message




Use Memory as the Network
(Repackaged container sidecar)

JSON Shared JSON
Encode Memory Decode

Use

Create
Message

Message



Use Memory as the Network
(No need to encode/decode)

Create Shared > Use
Message Memory Message




IN 2023 OR SO...
Large scale system

New memory hierarchy to manage

° 1
B

v.
QQ'

's of CPUs
of TB RAM
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's of GPUs
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’s of CPUs
of TB RAM
of TB PM

Petabyte scale
architecture
replicates data
THREE WAYS

for durability

Via a local switch
for lowest latency



Petabyte scale
architecture
replicates data

SIX WAYS
for resilience

Across three
availability zones
— like Aurora
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replicates data
NINE WAYS
for resilience
across zones
and regions

Follows the Netflix
architecture for
global reach and
disaster recovery



Questions

What is the right operating system
architecture to support this?

What is the right way to integrate
and operate cloud services?

What is the right way to construct
a petabyte scale application?

When will we enter the petalithic era? Petalith



THISIS A
TEASE

| have a I<Rore ideas

| have been thinking
about this for

Research

| want to encourage a research project that
will end up as a cross-industry open source
initiative like Tensorflow or Kubernetes

Petalith



THANK
YOU




Unavoidable Trade-offs of
Distributed Storage Systems in
the Cloud

Aleksey Charapko
University of New Hampshire



What Systems Do we Want?

Performant
Efficient
Reliable
Maintainable
Secure



Design Tradeoffs

_. Reliability Something must give
Scalability , when one design
consideration is in
higher priority.

Efficiency

Performance




Metastable Failures

RPS A
System's
Capacity
1000 RPS
750 RPS

Load

Time



Metastable Failures

A
RPS Load
System's Spike
Capacity
/- “Overioad
Norgmal
Load

Time



Metastable Failures

RPS A
Load
System'’s Spike
Capacity
" overoad
1000 RPS ittt
Amplification
750 RPS ("Positive Feedback Loop")
Norgmal
Load
>

Time



Metastable Failures

A
RPS Load Spike
Subsides
Load ¢
System'’s Spike
Capacity VPR \ S
1000 RPS / Amplification Metastable
"Positive Feedback Loop” Failure!
750 RPS — (Fositve Feadback Log P} ralel .
Normal
Load
500 RPS
Stable Region
>

Time



Tradeoffs Examples in Metastable Failures

- Running too close to capacity leaves no “wiggle” room to handle

triggers
- Aggressive timeouts & retries to minimize latency on transient

failures
- High performance gradients -- over optimized common path to the

detriment of the exception path



The Compiler Is the
Database

Bruce Lindsay



Firestore: The NoSQL
Serverless Database for the
Application Developer

Ram Kesavan
Google



SNL sketch
10/1/2022

Google Cloud


http://www.youtube.com/watch?v=yzeH4BBxDew&t=41
http://www.youtube.com/watch?v=yzeH4BBxDew&t=41

Serverless Use Case: Extreme Edition

e BeReal
o Negligible traffic for much of the day
o Everyone (in a continent) is notified together
o Everyone uploads their picture in the next 2 min
o And you view/comment on your friends’ pictures
e A how-to (blog link)
Created a POC prototype using Google Cloud
Simplified auth, storage, notifications, etc.
Firestore is the backing database
Serverless scale-out and pricing

Google Cloud Proprietary + Confidential

O O O O


https://cloud.google.com/blog/topics/startups/bereal-creates-reality-based-social-media-using-google-cloud

Firestore: NoSQL Serverless Database

e Firebase client-side SDK libraries
o Greatly simplifies coding for the app developer
o Maintains an on-device cache to hide latency to Firestore
o Offline access reduces to a variant of the default case
e Strong consistency is simpler to code to
o Spanner storage: ACID semantics, availability, reliability, and scaling
o Notification stack: updates to continuous queries from each mutation
o Pay as you use pricing with a (daily) free-tier
e Highly popular
o 250k+ monthly active application developers
o 3.5m+ databases have been created
o Powers 1B+ monthly active end-users

Google Cloud Proprietary + Confidential
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Ballerina in the House

An open-source programming language for network services

° Eric Newcomer, CTO

October, 2022



Picture credits: AltumCode on Unsplash

A visual representation of integration logic is important
to communicate with business users.

Domain specific languages (DSLs) have dominated
because they provide the right abstractions for
integration programming, albeit with limitations when it
comes to “regular code” parts of the problem.

Integration programming has lost software engineering
best practices because it lives in a closed universe.


https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/integration-programming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Produces network services

import ballerina/http;

configurable int port = ?;

type Country record {

s

string country;
int population;
int cases;
int deaths;

service / on new http:Listener(port) {

resource function get countries()
returns Country[] {

}

resource function get countries/[string country] ()
returns Country | http:NotFound {

}

resource function post
countries(@http:Payload Country country)
returns Country {

Application defines service objects and attaches
them to Listeners

Libraries provide protocol-specific Listeners, which
receive network input and dispatch to service objects

Service objects support two interface styles
o remote methods, named by verbs, support RPC style

o resources, named by method (e.g. GET) + noun, support
RESTful style (used for HTTP and GraphQL)

Types of service objects methods can used to
generate interface descriptions e.g. OpenAPI, GraphQL

Annotations on service objects enable easy cloud
deployment



Consumes network services

import ballerina/http;

public function main() returns error? {
http:Client diseaseData =
check new (openDiseaseDataURL);
Country[] countries =
check diseaseData->get("/countries");

L diseaseEp

( Country[]
countries

Key enabler for sequence diagram view of network
interactions

Outbound network interactions represented by
client objects

Client objects have remote methods that represent
outbound interactions with a remote system

Distinct syntax for calls remote method

Syntax restrictions make it possible to create a
sequence diagram for any function



Data oriented

// Describes both the payload on the wire
// and data in memory
type Country record {
string country;
int population;
int cases;
int deaths;
+s

public function main() returns error? {
http:Client diseaseData =
check new (openDiseaseDataURL);
Country[] countries =
check diseaseData->get("/countries");

Object-orientation bundles data with code: wrong
approach for network interaction

Ballerina emphasizes plain data - data that is
independent of any code used to process the data

Ballerina provides objects for internal interfaces,
but is not object-oriented

Ballerina’s plain data maps straightforwardly to and
from JSON

Native data types for XML and JSON



Example service & resource syntax with primitives for sequence diagram

import ballerina/http;

var clientObj = client object {
resource function get greeting/[string name] () returns string {
return "Hello, " + name;

}
resource function post game/[string name]/[int players] ()
return name + ": " + players.toString();
}i

public function main () {
string name = "Mark";
string result = clientObj->/greeting/[name];
// Will print Hello, Mark
io:println (result);

[string, int] gameDetails = ["Chess", 2];

result = clientObj->/game/[...gameDetails] .post;
// Will print Chess: 2

io:println (result);

returns string



Sequence diagram and code - with round trip - in VS Code

< D - sample.bal

BALLERINA LOW-CODE -+ B3 sample.bal Diagram X

 DIAGRAM EXPLORER sample.bal > ..
v workspace . 1 import ballerina/log;
SN choreo covid19Client - 2 import ballerinax/covid19;
. 3 import ballerinax/worldbank;
devcoritainecjson e 4 import wso2/choreo.sendemail;
> git 5
> .githooks 6 @display {label: "Country Code"}
& giignore 7 configurable string country
A ovidisico 8
e o statusByCo, = “' """""""""""""" l 9 @display {label: "Recipient's Email"}
& Cloud.tom! 10 configurable string emailAddress
# Dependencies.toml M T 1
¥ Package.md o ‘ Run | Debu
® README.md totalCases 12 public function main() returns error? {
worldBankClient 13
28 docs S 14 covid19:Client covid19Client = check new ();
sample.bal | 15 covid19:CovidCountry statusByCountry = check covid19Client->getStatusByCountry(country);
2oV ‘ 16 decimal totalCases = statusByCountry. cases;
e 17
I 18 worldbank:Client worldBankClient = check new ();
woridbanks.e.) " 19 worldbank:IndicatorInformation[] populationByCountry = check worldBankClient->getPopulation
population. - ‘ 20 int population = (populationByCountry[@].value ?: 0) / 1000000;
21
L 2 decimal totalCasesPerMillion = totalCases / <decimal>population;
i 23
~ CHOREO pepug(m‘ = 24 string mailBody = string 'Total Cases Per Million : ${totalCasesPerMillion}";
& Logged in as Asanka Abeysinghe 25
Hepio sl Manade in Choreo 26 sendemail:Client sendemailEndpoint = check new ();
X et 27 _ = check sendemailEndpoint->sendEmail(emailAddress, string ‘Covid Status in ${country},
@ Disable performance forecasting... e 28 mailBody);
29 log:printInfo("Email sent successfully!");

J

I 30 )
Cowrng | - 31
mailBody

+ send

new

X c69c6654-405e-4140-860-0742476f67b3.wor.. _ £* main® O Ballerina SDK: 2201.0.2 (Swan Lake) ¢ Sync with Choreo upstream  ® 0 A 0

N 51 I



“Swan Lake” Release Feb 2022

GA quality - completion of long beta for new cloud features

VS Code plugin enhanced for graphical code editing
(® Edit code -> generate sequence diagram

(® Edit sequence diagram -> generate code

(®  Full round tripping

Code to cloud syntax CL

(® Generate Docker files

(® Generate Kubernetes config

Extended distributed API programming model

(® Open API (Swagger)

(® gRPC

(®  AsyncAPI

WSO02 Choreo PaaS product built using Ballerina Swan Lake



Ballerina implementations

jBallerina nBallerina
e Toolchain written using Java e Cross compilation to native binaries via
LLVM

e Compiles to Java bytecodes and runs
on a JVM e Toolchain will be shared initially (compiler
front-end still in Java) but fully

e Provides Java interoperability bootstrapped soon

e Current production version e Provides a C FFI

e ETA: (soon?!?)

Ballerina by Example

N 53 N


https://ballerina.io/learn/by-example/

Upcoming features

Persistence abstraction
Long running transactions , (Seie;;:afl\;"
WorkﬂOW ,{ Bookings API

" | (external)

Data mapping tool (transformation) .~
Domain services -> 3

o gRPC inside the “domain”
o  HTTPS externally

Create
Bookings
MS

Retrieve
Bookings
MS

Inventory API

A (internal)

Update
Inventory
MS




Thanks!

Further info:

ballerina.io
choreo.io
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Building to Buy

Joshua Leners
Two Sigma



About me

Apostate systems researcher

Engineer at Two Sigma

2nd HPTS




Build vs Buy




Everything changes

Keep building

e - \\G ¥
, T N\
Keep buying - g\\

Give up




Two Sigma - 2005

Can’t buy S3, HDFS, Cassandra, but we
can read GFS paper

We can buy expensive appliances

=
=
—
s
P
-—
=——
p—
.
—
—
R —

Choice: Build our own (CelFS)




Two Sigma - 2015

Can’t buy cloud services (connectivity
on the roadmap)

What is Celfs good at?

What is it bad at?



Two Sigma 2020

Can buy cloud &

But our users have built to our APls

And our users have built to our performance profile



What we’ve learned

We're all buying, and it's more like subscription than not

Good integration skills are powerful



Deja vu in OS Isolation

Sid Agrawal
University of British Columbia



&)
=
B

.

Q

>

o

o
O
hd
L

o
L

771 o
~
49 N
/w/\ (N 2 Q\
S )
.\@Q\ Amv\b
/6 2 ¢ Q/W
0. 9
-,
s Y% m
Sy, S@oo 7 m
.\Qrvmv IV @Q )/ N
\T\ %\w OO%@
. v o\
05} %\Q m
o)
a

<
s X
@m\\«\,umv -
7
(S
m ) 2
O
/Sy O ,om,\%o o
rumuQ,w: %:ﬁ@ ,Vo Il/ _nﬁJ
%h/@ )/, .\Q\ ..lev I
Do 7
\H\O mm\ s o0
0\? N N %
/ mu\v 2, —
n /).wm
—
<y,
ey, 5
\mxmxx

47'
1945

65



Resource Isolation Is a spectrum

Consider the
memory resource

277

66



Problems with current scenario

. Isolation is incremental, but the implementation is not
- Increases the engineering cost
- More bugs
- Not everyone can afford to do this

67



Problems with current scenario

. No holistic view of the isolation

- What is the level of isolation provided by a
mechanism?

- How to specify the desired level of isolation?
- Too much isolation leads to poor performance.
_ Too less isolation leads to security vulnerabilities.

68



OSMosis

|dentify Resources

Fine-grained
/ Access Control

Enable Discovery of

Express Existing Mechanisms new abstractions 0



Osmosis: Two Parts

Precisely Defining what is shared (or not)

) Physical Resources Use Capabilities to enable delegation and
* Virtual Resources

) revocation of fine grained resources
* Underlying State (Kernel/VMM state)

Protection Domain

ol

Devices_,

Model Sharing and Isolation Realize with a Framework

70



OSmosis Framework

Deviceé




OSmosis Framework

Threads
with Isolated riginal PD

Stacks
C P9 Deviceé

Devic?

72




Open Questions

Shared
capabilities or
only copied
capabilities?

Is seL4 the right
substrate for this
work?

How does our design
change if we use
something like CHERI?

73



Context-Mediated Transactions

and DIsaggregated Memory

Pankaj Mehra
Elephance Memory



Our Large Context is a Flower of 7-19 dims unrolled in time

Graph [Databases] deliver contextualization to support new digital transformation initiatives... because messy
data without context can dramatically slow down the Al process. Noel Youhana (Forrester) April 21, 2021

1995 2010 2025
McCarthy . Dey,Cooke EKG
Emotions &
Facts and Context as Context
Rules that Ontology Graphs
axiomatize
a situation Cyber- Petabyte
and help us physical scale
reason
Context In-Memory
Context as Engines for
Ontology eCommerce Index-Free
& adjacency
Reasoning Advertising
Search — Page Rank, RW Recomm — Subgraph Isomorphism IPAs— wsD Fraud — s
Data: Crawled Content [GBs] Data: Users, Products Entities [TBs] Data: Sound, Speech 10s TB TBs/d x 30-90 d

/ Hadoop RDF Triple Store In-Memory Relational In-Memory Graph DB & DNN
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cari jaquet@gmail.co ~

C G
s ey Helped to disambiguate words like next iteration by
ol contextualizing and context-clustering on graphs of
Who said what to whom, when
,\ ,‘" ! o
\ / %change in engagement last month (by goal)
(pa»kajmehra; iesé or A / N Mindshare 7.00%
‘ ’ g s ﬂA
En rohit@whodini anilkgodhwani@gmail g :x ' A
‘ﬂ e T o | - [ =l e
' g ?x w = Whodini Inc
zm “ = linguistic pipeline

29 27 25 23 21 19 17 15 13 11 9 7 5 3 1
Days ago

T
- g&mA

Z =
sumi Igy uneEt@inidgy oo rr.r@vn,:g/o:«»
& rehan1681@ar
sumityij11@gmail o

ine@empoweredpr ¢

ronica@conceptpr.n

Example. Whodini (‘“10-13): Work Context extracted from email/calendar by applying Speech Act Theory + 47 algorithms against
210M data points / person / year from the 600,000 words each of us write every year!
76



Memory too is evolving in response to PB-scale use cases

Device-Side MemOS™
runs here

to manage this memory

Global pointers allows subgraphs
to be created and manipulated
as memory objects

at xPUs and devices

APIs and Language Bindings on the Hosts
allow graph functions (such as convolve @N1)
to be defined and shipped to the device as
easily as operating on that graph data from far
memory locally .

J/ Disaggregated Memory Node

77



Elephance MemOS ™
is a fork of Twizzler

Extreme relevance
of pointers for
near-memory

processing

Flexible
Placement

‘ Continued Collaboration

Twizzler.io and UCSC

Protecting
disaggregated memory
Efficient : against attacks & leaks
RPC beyond
“Mother May I?”
relationship between
memory & server

Persistent
Pointers

Independent
Scaling

78



MemOS™ offloads MI graph operations from CPUs, GPUs

MI Operations

Pointer chasing

(Convolution B
Clustering

In-DB ML Inf Op
Page Rank / RW
Connected Comps
Search-Accumulate
Shortest Paths
Filter-Aggregate

Compression

/Q (2

6) . . . . ‘/ 0
1[als] o < - @ - o (7 - PO I (4 =4
7|36 &S
6117 . PR > .

Convolution in CNN Q/ )
®
@
Localized Convolution in GNNs
Far Memory without MemQOS Far Memory with MemOS
Many RTTs, .
DMN chases pointers,
CPU chases pointers, Low goodput, . P Low latency,
. . . Retrieves neighbor node, .
Retrieves neighbor node, Cache pollution, ) High goodput,
. : Retrieves local property, .
Retrieves local property, NW flooding, Calculates fil | il Independent scaling
) , Rule of 3 penalty alculates filter polynomia
Calculates filter polynomial Returns convolved values

79



The Elephant in the Room

George Neville-Nell
Elephance Memory



The Good

* Provides a consistent
programming paradigm

* Led to unprecedented increase
in the amount of software

* Better than the fragmented
world of the 1960s-1970s

* Relatively open

* (some caveats apply, void where prohibited, do not
stick in ear.)




The Not So Good
* Plumbing is too visible

* Hidden assumptions

* Narrows thinking about how we
program

* Twists systems to be more like
itself.

* A drag on innovation.




Thoughts to Consider

* How do current computers
actually work?

* What do current programmers
really want?

-What other models are
possible?

e Data Oriented Programming

* Re-think the plumbing
* Don't just hide it




BigQuery in 4 minutes and
30 seconds

Justin Levandoski
Google



BigQuery

A serverless, highly scalable, and cost-effective cloud data warehouse

Fu”y managed @ BigQuery @ GotoClassic Ul + COMPOSE NEW QUE Petabyte-scale
/ storage
serverless, clusterless Query history Query editor (5] HIDE EDITOR g€
and queries
Saved queries 1

Job history

Transfers [/}

Resources + ADDDATA v
24/7 Service with > Q_ Search for your tables and datasets = ted. d bl
99.99% uptime » stardustanalysis X ncrypted, durable
»  bigquery-test-project-166321 b ¢
» bigquerytestdefault b 4 X & sevequey | i Saveview | %8 More ~ ®
» cloud-training-demos b ¢
» fh-bigquery x Query history C REFRESH
» helixdata2  §
Predictable EEny eeem Real-time analytics on
Performance sortty| Date = | | = Fier queies

streaming data

Integrated ML Easy to use SQL

without hints




“BigQuery was serverless before serverless was a thing.”

-Mosha Pasumansky



BigQuery Architecture

SQL:2011
Compliant

Replicated, Distributed BigQuery High-Available Cluster

Streaming Storage Compute SEaran
Ingest and
Read { |
E e . . - pTTTTTTTTTTTT ! Web Ul oLl
! Omm Omm o= Omm | ' Distributed | ebUl, C
{ : ' Memory Shuffle |
=E=EE T GE68
! O OEE OEs O . .
P OEE OEm O OEe | L ____ H Client
Bulk ! : Libraries
: ! — : In7
I = EEE
] [
] I

Petabit Network i: languages

Export



STORAGE & DATA TRANSFER

Colossus under the hood: a peek into
Google’s scalable storage system

Dean Hildebrand
Technical Director, Office of the
CTO, Google Cloud

Denis Serenyi
Tech Lead, Google Cloud
Storage

April 19,2021
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Large-scale cluster management at Google with Borg

Abhishek Verma  Luis Pedrosa?  Madhukar Korupolu
David Oppenheimer ~ Eric Tune  John Wilkes
Google Inc.

Abstract

Google’s Borg system is a cluster manager that runs hun-
dreds of thousands of jobs, from many thousands of differ-
ent applications, across a number of clusters cach with up to
tens of thousands of machines.

It achieves high utilization by combining admission con-
trol, efficient task-packing, over-commitment, and machine
sharing with process-level performance isolation. It supports
high-availability applications with runtime features that min-
imize fault-recovery time, and scheduling policies that re-
duce the probability of correlated failures. Borg simplifies
life for its users by offering a declarative job specification
language, name service integration, real-time job monitor-
ing, and tools to analyze and simulate system behavior.

We present a summary of the Borg system architecture
and features, important design decisions, a quantiative anal-
ysis of some of its policy decisions, and a qualitative ex-
amination of lessons leamed from a decade of operational
experience with it.

1. Introduction

‘The cluster management system we internally call Borg ad-
mits, schedules, starts, restarts, and monitors the full range
of applications that Google runs. This paper explains how.
Borg provides three main benefits: it (1) hides the details
of and fai ing so it
focus on application development instead; (2) operates with
very high reliability and availability, and supports applica-
tions that do the same; and (3) lets us run workloads across
tens of thousands of machines effectively. Borg is not the
first system to address these issues, butit’s one of the few op-
erating at this scale, with this degree of resiliency and com-
pleteness. This paper is organized around these topics, con-

T Work done while author was at Google:
# Currently at University of Southern California.

Permision to make digtal o hard copies of part o all of this work fo personal or

For all other uses, contactthe ownerfautha(s).
April21-24, 2015, Bocdeau, France.
‘Copyrght i hed by the owner/abor(s).
3238 571570,
hupiidsdoi org/10.1 14512741948 2741964

Figure 1: The high-level architecture of Borg. Only a
of the thousands of worker nodes are shown.

cluding with a set of qualitative observations we |
from operating Borg in production for more than :

2. The user perspective

Borg’s users are Google developers and system a
tors (site reliability engineers or SRE) that run

applications and services. Users submit their wor
in the form of jobs, each of which consists of on
tasks that all run the same program (binary). Eac
in one Borg cell, a set of machines that are mar
unit. The remainder of this section describes the
tures exposed in the user view of Borg.

2.1 The workload

Borg cells run a heterogenous workload with two 1
The first is long-running services that should *
down, and handle short-lived latency-sensitive ©
few ps to a few hundred ms). Such services ar
end-user-facing products such as Gmail, Google
web search, and for internal infrastructure serv
BlgTablc). The second is batch jobs that take fi
seconds to a few days to complete; these are mucl
sitive to short-term performance fluctuations. The
mix varies across cells, which run different mixes ¢
tions depending on their major tenants (e.g., som
quite batch-intensive), and also varies over time:
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ABSTRACT

Google’s Dremel was one of the first systems that combined a set of
architectural principles that have become a common practice in to-
day’s cloud-native analytics tools, including disaggregated storage

and compute, in situ analysis, and columnar storage for semistruc-
tured data. In this paper, we discuss how these ideas evolved in the
past decade and became the foundation for Google BigQuery.
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1. INTRODUCTION

Dremel is a distributed system for interactive data analysis that
was first presented at VLDB 2010 [32]. That same year, Google
launched BigQuery, a publicly available analytics service backed
by Dremel. Today, BigQuery is a fully-managed, serverless data
warchouse that enables scalable analytics over petabytes of data.!
Itis one of the fastest growing services on the Google Cloud Plat-
form.

A major contribution of papers originating from the industry in
the past decade, including the Dremel paper, is to demonstrate what
kind of systems can be built using state-of-the-art private clouds.
“This body of work both reduced the risk of exploring similar routes
and identified viable directions for future research. Introducing the
journal version of the paper [33], Mike Franklin pointed out that it
was “eye-opening” to learn that Google engineers routinely anal-
ysed massive data sets with processing throughputs in the range
of 100 billion records per second [20). His main take-away was
that simply throwing hardware at the problem was not sufficient.
Rather, it was critical to deeply understand the structure of the data

*Invited contribution for the VLDB 2020 Test of Time Award given
to the VLDB 2010 paper “Dremel: Interactive Analysis of Web-
Scale Datasets” [32)
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Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lioyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This APT
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

‘Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-
matically failover between replicas. Spanner automati-
cally reshards data across machines as the amount of data
or the number of servers changes, and it automatically
migrates data across machines (even across datacenters)
to balance load and in response to failures. Spanner is
designed to scale up to millions of machines across hun-
dreds of datacenters and trillions of database rows.

Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within or even across continents. Our
initial customer was F1 [35), a rewrite of Google’s a
vertising backend. Fl uses five replicas spread across
the United States. Most other applications will probably
replicate their data across 3 to 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That s, most applications will choose lower la-

Published in the Proceedings of OSDI 2012

tency over higher availability, as long as they can survive
1 0r 2 datacenter failures.

Spanner's main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult o use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37]) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned, and each version is automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

As a globally-distributed database, Spanner provides
several interesting features. _First, the replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,
how far data is from its users (to control read latency),
how far replicas are from each other (to conirol write la-
tency), and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data
can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
Second, Sp
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“Serverless” Design Principles and Advantages

e Disaggregation of compute, storage, memory
o On-demand scaling of each resource
o On-demand sharing of resources
o Adapts well to multi-tenant usage at lower cost
e Fault tolerance and restartability
o At scale assume everything is unreliable/slow
o Query subtasks are deterministic and repeatable

o Multiple copies of same task dispatched to avoid stragglers



In Memory Shuffle

e BigQuery implements a disaggregated memory-based shuffle
RAM/disk managed separately from compute tier

Reduced shuffle latency by order-of-magnitude

Enables order-of-magnitude larger shuffles

Reduced resource cost by 20%
Avoid resource fragmentation, stranding, poor isolation

O O O O O

e Persistence in shuffle layer
o Checkpoint query execution state
o Allows flexibility in scheduling + execution (preemption of workers)



Dynamic Scheduling

Query 4 needs less resources

Query 5 is submitted
Query 4 finishes
slots
.............. A vailable slots

2000 el

1000

time



Dynamic Query Execution

TS

e Dynamic (Re)Partitioning: load balance and adjust parallelism while
adapting to any query or data shape and size

»  Dynamic join processing:
o Example - start with shuffle join, but cancel and switch to
broadcast join if data sizes warrant it

T
H
e

m , -~ -—— ————
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Read / Write API + Streaming

e Read API

o Read data in parallel directly from BQ storage

o For consumption by Spark, Presto, Tensorflow, etc, etc...
e Write API

o Industry-leading stream ingest support at scale

o Exactly once semantics

o Stream-level and cross-stream transactions



DATA ANALYTICS

Now in preview, BigQuery search features
provide a simple way to pinpoint unique
elements in data of any size

|
® .
® g e 0
|
Srinidhi Raghavan Today, we are excited to announce the public preview of search indexes and related
i‘::”f’e Engineer. Google SQL SEARCH functions in BigQuery. This is a new capability in BigQuery that allows you
u
to use standard BigQuery SQL to easily find unique data elements buried in

Christopher Crosbie unstructured text and semi-structured JSON, without having to know the table
Pr M: le N . — .
C’;‘j:“‘ lanager. Google schemas in advance. By making row lookups in BigQuery efficient, you now have a

powerful columnar store and text search in a single data platform. This allows for

DEVOPS & SRE

Introducing Cloud Logging - Log Analytics,

powered by BigQuery

Charles Baer
Product Manager, Google
Cloud

September 27, 2022

Google Cloud Next
‘22

Register for our flagship event
October 11-13.

REGISTER NOW

Logging is a critical part of the software development lifecycle allowing developers to
debug their apps, DevOps/SRE teams to troubleshoot issues, and security admins to
analyze access. Cloud Logging provides a powerful pipeline to reliably ingest logs at
scale and quickly find your logs. Today, we're pleased to announce Log Analytics, a new
set of features in Cloud Logging available in Preview, powered by BigQuery that allows
you to gain even more insights and value from your logs.

Introducing Log Analytics

Log Analytics brings entirely new capabilities to search, aggregate, or transform logs at
query time directly into Cloud Logging with a new user experience that's optimized for
analyzing logs data through the power of BigQuery. BigQuery is a cost-effective,
serverless, multi cloud data warehouse to power your data-driven innovation.

With Log Analytics. you can now harness SQL (see figure 1) and the capabilities of

X B ¢« 9O
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BigQuery Omni

BigQue :
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Model Import/Export

TensorFlow models for
batch and online
prediction

BigQuery ML

Classification Regression

Logistic regression Linear regression

DNN classifier (TensorFlow) DNN regressor (TensorFlow)

Boosted trees using XGBoost Boosted trees using XGBoost

AutoML Tables AutoML Tables

Other Models

® k-means clustering

® Time series forecasting

® Recommendation:
Matrix factorization




CREATE TABLE datasetl.images
WITH CONNECTION 'service accountl'’

OPTIONS (uris=['gs://mybucket/*'])

Unstructured Data

&

filename create_time generation
imagel.jpg 2021-11-04 2rba7gbp0
image2.jpg 2021-11-05 gbp02rba7
image3.jpg 2021-11-06 pO2rbgbgb

<

SELECT * FROM
ML.PREDICT(MODEL cat_detector,

SELECT _HANDLE FROM datasetl.images

WHERE ENDSWITH(filename, 'jpg')

AND create_time > TIMESTAMP('2021-1-1")

)




The Sugar-free Chocolate of
Databases

Matt Butrovich

Carnegie Mellon University
#1 Ranked CMU-DB PhD Student



Eating Smarter
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Staring at DBMS Traces

AL A mEKE QJe>E2E E Qaaaml

N pgsal
| Destination port (resolved) | Protocol | Length | Info
60316 268 <1/2/T/D/C/Z
5432 340 >P/B/D/E/S
60316 762 <1/2/T/D/C/Z
5432 2275 >P/B/D/E/P/B/D/E/S
60316 134 <1/2/n/C/1/2/n/C/Z
5432 2951 >P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/P/B/D/E/S
60316 362 <1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/1/2/n/C/Z @
5432 118 >P/B/D/E/S v
60316 142 <1/2/T/D/C/Z
5432 109 >P/B/E/S
60316 94 <1/2/C/Z
5432 244 >P/B/E/P/B/D/E/S
60316 169 <1/2/C/1/2/T/D/C/Z
5432 392 >P/B/D/E/S
60316 146 <1/2/T/D/C/Z
5432 118 >P/B/D/E/S
60316 142 <1/2/T/D/C/Z
5432 109 >P/B/E/S
60316 94 <1/2/C/Z
5432 293 >P/B/E/P/B/D/E/S
60316 243 <1/2/C/1/2/T/D/C/Z
5432 169 >P/B/D/E/S
60316 144 <1/2/T/0/C/Z
5432 222 >P/B/D/E/S
60316 182 <1/2/T/b/C/Z
5432 225 >P/B/D/E/S
60316 101 <1/2/n/C/Z
5432 349 >P/B/D/E/S
60316 103 <1/2/n/C/Z
5432 223 >P/B/D/E/S
60316 103 <1/2/n/C/Z
5432 183 >P/B/D/E/S
60316 263 <1/2/T/D/C/Z
5432 340 >P/B/D/E/S
60316 767 <1/2/T/D/C/Z
5432 183 >P/B/D/E/S
60316 270 <1/2/T/b/C/Z
5432 340 >P/B/D/E/S
- e > 5T AT

> Frame 221: 118 bytes on wire (944 bits), 118 bytes captured (944 bits)

Ethernet II, Src: Pegatron_la:23:04 (d4:5d:df:1a:23:04), Dst: EliteGro_60:7b:e¢

Internet Protocol Version 4, Src: 192.168.1.140, Dst: 192.168.1.138 00 : o
Transmission Control Protocol, Src Port: 60316, Dst Port: 5432, Seq: 10449, Ach 5 SELECT 1
PostgreSQL
PostgreSQL : 2
PostgreSQL

PostgresSQL

PostgreSQL



Zero Calorie Queries

1,462,909 queries from various workloads... Carnegie Mellon
Database

CMDBAC data set shows that they are 7 Application Catalog

A repository of over 8000 ready-to-run database applications

2 7 % Of a I | q u e ri eS ! A ‘ for analysis and benchmarking

Look in your SQL logs and you’ll see these queries over and over again!

File Edit View Bookmarks Plugins Settings Help

2022-10-09T05:02:55.618041Z 1906268 Query  SELECT ‘core_system'. id', ‘core_system' . slug’, "core_system . name', ‘core_system'. created', ‘core_system
."modified’, “core_system’. secret_key', “core_system’. view_count’, “core_system'. ver' FROM ‘core_system® WHERE ‘core_system . id" = 277 LIMIT 21
2022-10-09T05:02:55.618834Z 1906268 Query  SELECT ‘core_systemvisit'. id', ‘core_systemvisit' . system_id', ‘core_systemvisit'. ip_address’, ‘core_system
visit'. user_agent’, ‘core_systemvisit'. created” FROM 'core_systemvisit® WHERE ( core_systemvisit'. ip_address’ = '122.165.124.50' AND ‘core_systemvisit . u
ser_agent’ = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36')

2022-10-09T0! :55.679771Z 1907203 Connect peloton_user@localhost on using Socket

2022-10-09T05:02:55.679936Z 1907203 Query  Say NAMES utf8mb4

2022-10-09T05:02:55.680196Z 1907203 Query S| NAMES 'utf8mb4' COLLATE 'utf8mb4_unicode_520_ci'

2022-10-09T05:02:55.680251Z 1907203 Query  SELECT @@SESSION.sql_mode

2022-10-09T05:02:55.680347Z 1907203 Query 3] SESSION sql_mode='NO_ZERO_IN_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION'
2022-10-09T05:02:55.680405Z 1907203 Init DB peloton

2022-10-09T05:02:55.680955Z 1907203 Query  SELECT option_name, option_value FROM wp_options WHERE autoload = 'yes

2022-10-09T05:02:55.685831Z 1907203 Query  SELECT option_value FROM wp_options WHERE option_name = 'gzipcompression' LIMIT 1

Q Zoom : bash X () db-web X Papers : bash
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DBMS Proxies to the Rescue

e PgBouncer, RDS Proxy, ProxySQL

e [eatures:
o Connection pooling
o  Query rewriting
o Sharding
o  Query caching

103



What | Do

e Tigger is a proxy that pushes Application Layer (i.e., L7) DBMS protocol logic
into kernel-space via eBPF.

e Perform things like transaction pooling and workload replication without ever
going to user-space. User-bypass.

104



| am graduating in early 2024.
| will be expensive to hire.
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Coming out of Codd’s shadow
- search on unstructured data

Mehul A. Shah
mehul@aryn.ai
www.linkedin.com/in/mehulashah/

Arun 106
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The Zeitgeist

e Unstructured data abounds in enterprises

o growing 3X faster than structured
o non-consumption: 90% of this data is “dark”

e Datalakes are all the rage
o lots of attention on structured
o docs, audio, images, videos, logs, genomes, ...
o don't know what | have, where it is, and how to synthesize it

e |'ve beenunder arockfor 5years

o new large (transformer) models can ... speak English, feed my dogs ...
o 10x/year parameter growth - disrupted overnight
o opensource - download 10GBs from internet

Arun 107



The brilliance of Codd ...

1970s
gueriesin map datainto

relational
algebra

relational calculus

(first-order logic) relational model

separate app from technology growth
lasted 50 years, 10" 10X

what about unstructured data?
Arun 108



Out of Codd’s shadow ...

2020s
Ueries in public data
. modeled in
keywords
natural language alphabet soup of
image search LLM - transformers

recommendations

transformer learns the data and the queries
can we understand them? is there an algebra?
what happens for the next 50 years?

Arun 109



Stop Losing Sleep
Over Losing Data

Doug Terry
Amazon Web Services



Customers increasingly fret about

1. Data loss

2. Region failures
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What can we

do about
RPO?



Option 1: Accept it

Region I

Region B




Option 1: Accept it

Region A

Replication

Region B




Option 2: Reconcile it

Region A
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Option 2: Reconcile it
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Option 2: Reconcile it
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Option 3: Prevent it
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What to do about RPO?

O

otion 1: Accept it
otion 2: Reconcile it

O

O

ntion 3: Prevent it



BE
CAREFUL

ONLY
YOU CAN




Thank you!



