
HPTS 2022

Gong Show

1

Connecting the dots:
Evolution and
Revolution on the way
to the Cloud

Sailesh Krishnamurthy
VP, Engineering

Google Cloud

Proprietary + Confidential

Evolution
Many smaller databases

Migrating existing workloads

Evolve existing RDBMS engines

Two approaches circa ~2002

Revolution
Fewer massive databases

Newer, transformative workloads

Scale over relational semantics

What changed in the last ~20 years ?

Databases: Evolution and Revolution
Google Cloud SQL

● Control planes to manage RDBMS
● Hosted in commodity VMs
● Backed by generic block storage

Google AlloyDB

● Database-optimized storage
● Offload IO, improve costs/latency
● Compute / Storage separation

Google Bigtable

● Partition for scale, solve IR problems
● NoSQL/KV instead of xact, relational, SQL
● Compute / Storage separation

Google Spanner
● Global cross-partition transactions
● Full ANSI SQL, relational semantics
● Compute / Storage separation

Data Warehouses: Evolution and Revolution
Hoist MPP DW to Cloud

● Control planes on MPP RDBMS
● Storage co-located with compute
● Data partitioning usually “sticky”

Cloud MPP

● Compute / Storage separation
● Autoscale compute
● Data planes still use MPP RDBMS

Dremel: “Online Map Reduce”

● Build for scale
● Forgo relational/SQL semantics
● Flex compute shape thru containers
● Compute / Storage separation

BigQuery
● Full ANSI SQL support
● Enterprise security and governance
● Serverless relational data warehouse
● Compute / Storage separation

Proprietary + Confidential

Key Takeaways
Did anybody say “separation of compute and storage” ??

Cross-pollination of ideas is great for our community
● Differing motivations have driven continuous innovation
● The worlds of “revolution” and “evolution” are now converging

New opportunities
● Cloud customers demand more integrated services
● Analytics and Transactional systems can leverage each other

Google’s unique approach is highly differentiated:
● Build infrastructure at unprecedented scale
● Reuse with external and internal customers

Thank you

Adrian Cockcroft - OrionX.net
HPTS 2022

Petalith
Memory is the treasury and guardian of all
things - Cicero

What is
big data?

Data that doesn’t fit in memory on one machine

Currently about 24 TB

Biggest Memory Sizes Trend

Emergence of
petabyte scale
systems

Terabytes
of memory

10,000

1,000PE
TA

10

1

0.1
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

N
O

Wcr1.8xl

0.24

x1.32xl

2
x1e.32xl

4

u-12tb1

12
u-24tb1

24
100?

100

1,000
?

What limits
speedup?

Amdahl’s Law – the serial portion of a workload

In a distributed system The Communication

"the overall performance improvement gained by optimizing a single part of a system is
limited by the fraction of time that the improved part is actually used” – Gene Amdahl -
1967

Gbits/
second

1,000

10

1

2022

100

0.1

NETWORKING
Ethernet capacity in a single instance

1

10

100
400

800

EC2 UltraClusters (2022)
10000+ Trainium GPUs on 800GBit links into petabit scale fabric

Gigabytes/s
bandwidth

10,000

100

10

512GB 80GB640GB24,000GB5,120,000GB

1,000

1

Memory capacity vs. bandwidth

Engulf your data
in memory to
reduce
overhead, if it
fits

UltraCluster 10000+
Trn1

800Gbit Ethernet
Network bandwidth

per node

AWS u24-tb1
8x Intel

Cascade Lake
Main memory

Single
NVIDIA A100
1.2TByte/s

GPU memoryAWS p4de
8x NVIDIA A100

NVLINK 600GByte/s
GPU memory

AWS Trn1
16x 32GB

GPU memory
NeuronLink

768GBytes/s

Memory capacity

How do we
communicate?

By encoding transmitting receiving and decoding

How do we do it? Really inefficiently!

Send an email with an idea and wait

Friday

SaturdaySundayMonday

A bit better? Direct Conversation (e.g. at HPTS)
Including eye contact and body language protocols

I’ve got this idea about
really big memory

systems. What do you
think of it….?

Cool, how does it work in
this situation.?

How do systems
communicate?

By encoding transmitting receiving and decoding

How do systems do it? Really inefficiently!

Typical containerized microservice call pattern
Every step makes a new copy of the message

JSON
Encode

Envoy
Proxy

VM
OS

Network
Switch

Host
OS

Create
Message

JSON
Decode

Envoy
Proxy

VM
OS

Host
OS

Use
Message

Shortcut the network

JSON
Encode

Envoy
Proxy

VM
OS

Host
OS

Create
Message

JSON
Decode

Envoy
Proxy

VM
OS

Use
Message

Use Memory as the Network
(no app code changes)

JSON
Encode

Envoy
Proxy

Create
Message

JSON
Decode

Envoy
Proxy

Use
Message

Use Memory as the Network
(Repackaged container sidecar)

JSON
Encode

Create
Message

JSON
Decode

Use
Message

Shared
Memory

Use Memory as the Network
(No need to encode/decode)

Create
Message

Use
Message

Shared
Memory

IN 2023 OR SO…
Large scale system

New memory hierarchy to manage

NETWORK

400 Gbit
100’s of CPUs
10’s of TB
RAM

100’s of TB
PM

100’s of G
PUs

1TB G
PU

RAM

400
Gbit

10
0’s

 o
f C

PU
s

10
’s

of
 T

B

RA
M

10
0’s

 o
f T

B

PM

10
0’s

 o
f G

PU
s

1T
B

G
PU

RA
M

800
G

bit
100’s of CPUs

10’s of TB RAM
100’s of TB CXL
100’s of GPUs
1TB GPU RAM

NETWORK

GPU 1
TB

DRA
M

10’s
of TB

CX
L

100’s
of TB

Petabyte scale
architecture
replicates data
THREE WAYS
for durability

8400 Gbit

100’s of CPUs

10’s of TB RAM

100’s of TB PM

100’s of G
PUs

1TB G
PU RAM

800
Gbit

10
0’s

 o
f C

PU
s

10
’s

of
 T

B
RA

M

10
0’s

 o
f T

B
PM

10
0’s

 o
f G

PU
s

1T
B

G
PU

 R
AM

800
G

bit

100’s of CPUs
10’s of TB RAM
100’s of TB PM
100’s of GPUs
1TB GPU RAM

NETWORK

Via a local switch
for lowest latency

IN 2022 OR SO…
Large scale system

New memory hierarchy to manage

GP
U

1
TB

DRA
M

10’
s

of TB

PM 100’s
of TB

40
0 Gb

it

100’s of CPUs

10’s of TB

RAM

100’s of TB PM

100’s of GPUs

1TB GPU RAM

400
Gbit

10
0’

s
of

 C
P

U
s

10
’s

 o
f T

B

R
A

M
10

0’
s

of
 T

B
 P

M
10

0’
s

of
 G

P
U

s
1T

B
 G

P
U

 R
A

M

400
Gbit

100’s of CPUs
10’s of TB RAM

100’s of TB PM

100’s of GPUs

1TB GPU RAM

400
Gbit

100’s of C
P

U
s

10’s of TB

R
A

M
100’s of TB

 P
M

100’s of G
P

U
s

1TB
 G

P
U

 R
A

M

40
0

Gb
it

100’s of CPUs
10’s of TB RAM

100’s of TB PM

100’s of GPUs

1TB GPU RAM

400Gbit

100’s of CPUs

10’s of TB

RAM

100’s of TB PM

100’s of G
PUs

1TB GPU RAM

NETWORK

Petabyte scale
architecture

replicates data
SIX WAYS

for resilience

Across three
availability zones

– like Aurora

Petabyte scale
architecture
replicates data
THREE WAYS
for durability

Via a local switch
for lowest latency

40
0

G
bi

t

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM

100’s of
GPUs

1TB GPU
RAM

400Gbit

10
0’s

 o
f

CP
Us

10
’s

of
 T

B
RA

M
10

0’s
 o

f T
B

PM
10

0’s
 o

f
G

PU
s

1T
B

G
PU

RA

M

400
Gbit

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

G
PUs

1TB G
PU

RAM

400 Gbit

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM

100’s of
G

PUs
1TB G

PU
RAM

400
Gbit

10
0’s

 o
f

CP
Us

10
’s

of
 T

B

RA
M

10
0’s

 o
f T

B

PM 10
0’s

 o
f

G
PU

s

1T
B

G
PU

RA
M

400
G

bit

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM

100’s of
GPUs

1TB GPU
RAM

40
0 Gb

it

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

GPUs

1TB GPU

RAM

400
Gbit

10
0’

s
of

C

P
U

s
10

’s
 o

f T
B

R

A
M

10
0’

s
of

 T
B

P

M
10

0’
s

of

G
P

U
s

1T
B

 G
P

U

R
A

M
400

Gbit

100’s of CPUs10’s of TB RAM100’s of TB PM100’s of GPUs1TB GPU RAM

400
Gbit

100’s of
C

P
U

s
10’s of TB

R

A
M

100’s of TB

P
M

100’s of
G

P
U

s
1TB

 G
P

U

R
A

M
40

0
Gb

it

100’s of CPUs 10’s of TB RAM 100’s of TB PM 100’s of GPUs 1TB GPU RAM

400Gbit

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

GPUs

1TB GPU

RAM

NETWORK

Petabyte scale
architecture

replicates data
SIX WAYS

for resilience

Across zones
for resilience

400
G

bit

100’s of CPUs10’s of TB RAM100’s of TB PM
100’s of GPUs1TB GPU RAM

40
0

G
bi

t

100’s of CPUs 10’s of TB RAM 100’s of TB PM
100’s of GPUs 1TB GPU RAM

400Gbit

10
0’s

 of

CPUs
10

’s
of

TB
RAM

10
0’s

 of
 TB

PM
10

0’s
 of

GPUs

1T
B G

PU
RAM

400
Gbit

100’s of

C
PU

s

10’s of TB

R
AM

100’s of TB

PM
100’s of

G
PU

s

1TB G
PU

R
AM

40
0 Gbit

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

GPUs

1TB GPU

RAM

400
Gbit

10
0’

s
of

C
PU

s

10
’s

 o
f T

B

R
AM

10
0’

s
of

 T
B

PM 10
0’

s
of

G
PU

s

1T
B

G
PU

R
AM

40
0

G
bi

t

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM
100’s of

GPUs

1TB GPU

RAM

400
Gbit

10
0’

s
of

C

PU
s

10
’s

 o
f T

B
R

AM
10

0’
s

of
 T

B
PM

10
0’

s
of

G

PU
s

1T
B

G
PU

R

AM

400

Gbit

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM100’s of

GPUs
1TB GPU
RAM

400
Gbit

100’s of
C

PU
s

10’s of TB
R

AM
100’s of TB

PM
100’s of
G

PU
s

1TB G
PU

R

AM

40
0

Gbit

10
0’s

 of

CPUs
10

’s
of

TB
RAM

10
0’s

 of
 TB

PM 10
0’s

 of

GPUs
1T

B G
PU

RAM

400
G

bit

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM
100’s of

GPUs

1TB GPU

RAM

40
0

G
bi

t

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM

100’s of
GPUs

1TB GPU
RAM

400Gbit

10
0’s

 o
f

CP
Us

10
’s

of
 T

B
RA

M
10

0’s
 o

f T
B

PM
10

0’s
 o

f
G

PU
s

1T
B

G
PU

RA

M 400
Gbit

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

G
PUs

1TB G
PU

RAM

400 Gbit

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM

100’s of
G

PUs
1TB G

PU
RAM400

Gbit

10
0’s

 o
f

CP
Us

10
’s

of
 T

B

RA
M

10
0’s

 o
f T

B

PM 10
0’s

 o
f

G
PU

s

1T
B

G
PU

RA
M

400
G

bit

100’s of
CPUs

10’s of TB
RAM

100’s of TB
PM

100’s of
GPUs

1TB GPU
RAM

40
0 Gb

it

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

GPUs

1TB GPU

RAM

400
Gbit

10
0’

s
of

C

P
U

s
10

’s
 o

f T
B

R

A
M

10
0’

s
of

 T
B

P

M
10

0’
s

of

G
P

U
s

1T
B

 G
P

U

R
A

M

400
Gbit

100’s of CPUs10’s of TB RAM100’s of TB PM100’s of GPUs1TB GPU RAM

400
Gbit

100’s of
C

P
U

s
10’s of TB

R

A
M

100’s of TB

P
M

100’s of
G

P
U

s
1TB

 G
P

U

R
A

M

40
0

Gb
it

100’s of CPUs 10’s of TB RAM 100’s of TB PM 100’s of GPUs 1TB GPU RAM

400Gbit

100’s of

CPUs

10’s of TB

RAM

100’s of TB

PM

100’s of

GPUs

1TB GPU

RAM

NETWORK

Petabyte scale
architecture
replicates data
NINE WAYS
for resilience
across zones
and regions

Follows the Netflix
architecture for
global reach and
disaster recovery

What is the right operating system
architecture to support this?

What is the right way to integrate
and operate cloud services?

What is the right way to construct
a petabyte scale application?

When will we enter the petalithic era?

Questions

Petalith

Research
I want to encourage a research project that
will end up as a cross-industry open source

initiative like Tensorflow or Kubernetes

THIS IS A
TEASE

RI have a lot more ideas

I have been thinking
about this for

10+
YEARS Petalith

THANK
YOU

Unavoidable Trade-offs of
Distributed Storage Systems in

the Cloud

Aleksey Charapko
University of New Hampshire

32

What Systems Do we Want?

- Performant
- Efficient
- Reliable
- Maintainable
- Secure
- …

Design Tradeoffs

Something must give
when one design
consideration is in
higher priority.

Metastable Failures

Metastable Failures

Metastable Failures

Metastable Failures

Tradeoffs Examples in Metastable Failures

- Running too close to capacity leaves no “wiggle” room to handle
triggers

- Aggressive timeouts & retries to minimize latency on transient
failures

- High performance gradients -- over optimized common path to the
detriment of the exception path

The Compiler Is the
Database

Bruce Lindsay

40

Firestore: The NoSQL
Serverless Database for the

Application Developer

Ram Kesavan
Google

41

Proprietary + Confidential

SNL sketch
10/1/2022

http://www.youtube.com/watch?v=yzeH4BBxDew&t=41
http://www.youtube.com/watch?v=yzeH4BBxDew&t=41

Proprietary + Confidential

Serverless Use Case: Extreme Edition

● BeReal
○ Negligible traffic for much of the day
○ Everyone (in a continent) is notified together
○ Everyone uploads their picture in the next 2 min
○ And you view/comment on your friends’ pictures

● A how-to (blog link)
○ Created a POC prototype using Google Cloud
○ Simplified auth, storage, notifications, etc.
○ Firestore is the backing database
○ Serverless scale-out and pricing

https://cloud.google.com/blog/topics/startups/bereal-creates-reality-based-social-media-using-google-cloud

Proprietary + Confidential

Firestore: NoSQL Serverless Database

● Firebase client-side SDK libraries
○ Greatly simplifies coding for the app developer
○ Maintains an on-device cache to hide latency to Firestore
○ Offline access reduces to a variant of the default case

● Strong consistency is simpler to code to
○ Spanner storage: ACID semantics, availability, reliability, and scaling
○ Notification stack: updates to continuous queries from each mutation
○ Pay as you use pricing with a (daily) free-tier

● Highly popular
○ 250k+ monthly active application developers
○ 3.5m+ databases have been created
○ Powers 1B+ monthly active end-users

Ballerina in the House
An open-source programming language for network services

Eric Newcomer, CTO

October, 2022

Integration is
programming, but…

A visual representation of integration logic is important
to communicate with business users.

Domain specific languages (DSLs) have dominated
because they provide the right abstractions for
integration programming, albeit with limitations when it
comes to “regular code” parts of the problem.

Integration programming has lost software engineering
best practices because it lives in a closed universe.

Picture credits: AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/integration-programming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

import ballerina/http;

configurable int port = ?;

type Country record {
 string country;
 int population;
 int cases;
 int deaths;
};

service / on new http:Listener(port) {
 resource function get countries()

returns Country[] {
 }

 resource function get countries/[string country]()
returns Country | http:NotFound {

 }

 resource function post
countries(@http:Payload Country country)
returns Country {

 }
}

● Application defines service objects and attaches
them to Listeners

● Libraries provide protocol-specific Listeners, which
receive network input and dispatch to service objects

● Service objects support two interface styles
○ remote methods, named by verbs, support RPC style

○ resources, named by method (e.g. GET) + noun, support
RESTful style (used for HTTP and GraphQL)

● Types of service objects methods can used to
generate interface descriptions e.g. OpenAPI, GraphQL

● Annotations on service objects enable easy cloud
deployment

Produces network services

import ballerina/http;

public function main() returns error? {
 http:Client diseaseData =
 check new (openDiseaseDataURL);
 Country[] countries =
 check diseaseData->get("/countries");
}

● Key enabler for sequence diagram view of network
interactions

● Outbound network interactions represented by
client objects

● Client objects have remote methods that represent
outbound interactions with a remote system

● Distinct syntax for calls remote method

● Syntax restrictions make it possible to create a
sequence diagram for any function

Consumes network services

// Describes both the payload on the wire
// and data in memory
type Country record {
 string country;
 int population;
 int cases;
 int deaths;
};

public function main() returns error? {
 http:Client diseaseData =
 check new (openDiseaseDataURL);
 Country[] countries =
 check diseaseData->get("/countries");
}

● Object-orientation bundles data with code: wrong
approach for network interaction

● Ballerina emphasizes plain data - data that is
independent of any code used to process the data

● Ballerina provides objects for internal interfaces,
but is not object-oriented

● Ballerina’s plain data maps straightforwardly to and
from JSON

● Native data types for XML and JSON

Data oriented

Example service & resource syntax with primitives for sequence diagram
import ballerina/http;

var clientObj = client object {
 resource function get greeting/[string name]() returns string {
 return "Hello, " + name;
 }

 resource function post game/[string name]/[int players]() returns string
{
 return name + ": " + players.toString();
 }
};

public function main() {
 string name = "Mark";
 string result = clientObj->/greeting/[name];
 // Will print Hello, Mark
 io:println(result);

 [string, int] gameDetails = ["Chess", 2];
 result = clientObj->/game/[...gameDetails].post;
 // Will print Chess: 2
 io:println(result);
}

51

Sequence diagram and code - with round trip - in VS Code

“Swan Lake” Release Feb 2022

● GA quality - completion of long beta for new cloud features
● VS Code plugin enhanced for graphical code editing

⦿ Edit code -> generate sequence diagram
⦿ Edit sequence diagram -> generate code
⦿ Full round tripping

● Code to cloud syntax CL
⦿ Generate Docker files
⦿ Generate Kubernetes config

● Extended distributed API programming model
⦿ Open API (Swagger)
⦿ gRPC
⦿ AsyncAPI

● WSO2 Choreo PaaS product built using Ballerina Swan Lake

nBallerina

● Cross compilation to native binaries via
LLVM

● Toolchain will be shared initially (compiler
front-end still in Java) but fully
bootstrapped soon

● Provides a C FFI

● ETA: (soon?!?)

jBallerina

● Toolchain written using Java

● Compiles to Java bytecodes and runs
on a JVM

● Provides Java interoperability

● Current production version

Ballerina by Example

Ballerina implementations

53

https://ballerina.io/learn/by-example/

Upcoming features

54

● Persistence abstraction
● Long running transactions
● Workflow
● Data mapping tool (transformation)
● Domain services ->

○ gRPC inside the “domain”
○ HTTPS externally

Thanks!

Further info:

ballerina.io
choreo.io

55

Building to Buy

Joshua Leners
Two Sigma

56

About me

Apostate systems researcher

Engineer at Two Sigma

2nd HPTS

Build vs Buy

Everything changes

Keep building

Keep buying

Give up

Two Sigma - 2005

Can’t buy S3, HDFS, Cassandra, but we
can read GFS paper

We can buy expensive appliances

Choice: Build our own (CelFS)

Two Sigma - 2015

Can’t buy cloud services (connectivity
on the roadmap)

What is Celfs good at?

What is it bad at?

Two Sigma 2020

Can buy cloud 🎉

But our users have built to our APIs

And our users have built to our performance profile

What we’ve learned

We’re all buying, and it’s more like subscription than not

Good integration skills are powerful

Déjà vu in OS Isolation

Sid Agrawal
University of British Columbia

64

Isolation over Time

65

1945

W
ha

t’s
 Is

ol
at

io
n?

1961

Vi
rt

ua
l M

em
or

y:
 a

dd
re

ss
 s

pa
ce

s!

1963
M

ul
tic

s:
 P

ro
ce

ss
es

1970

O
S/

36
0:

 V
irt

ua
l M

ac
hi

ne
s

1984

M
ac

h:
 T

hr
ea

ds

2013

D
oc

ke
r:

 C
on

ta
in

er
s

1997

D
IS

CO
: V

irt
ua

l M
ac

hi
ne

s

1999

Re
so

ur
ce

 C
on

ta
in

er
s

2020

Li
gh

tw
ei

gh
t V

M

2013

En
cl

av
es

: I
nt

el
 S

G
X

Sh
ar

ed

Is
ol

at
ed

Resource Isolation Is a spectrum

66

???

Ph
ys

ic
al

ly
 I

so
la

te
d

Consider the
memory resource

Problems with current scenario

• Isolation is incremental, but the implementation is not
– Increases the engineering cost
– More bugs
– Not everyone can afford to do this

67

Problems with current scenario

• No holistic view of the isolation
– What is the level of isolation provided by a

mechanism?
– How to specify the desired level of isolation?
– Too much isolation leads to poor performance.
– Too less isolation leads to security vulnerabilities.

68

69

OSMosis
Identify Resources

Fine-grained
Access Control

Enable Discovery of
new abstractionsExpress Existing Mechanisms

Osmosis: Two Parts

70

Protection Domain

CPU Memory Devices

Realize with a Framework

Use Capabilities to enable delegation and
revocation of fine grained resources

Precisely Defining what is shared (or not)
• Physical Resources
• Virtual Resources
• Underlying State (Kernel/VMM state)

Model Sharing and Isolation

71

OSmosis Framework

71

Original PD

CPU Memory Devices

co
de

he
ap

st
ac

k-
1

st
ac

k-
2

72

OSmosis Framework

72

Original PD

CPU Memory Devices

co
de

he
ap

st
ac

k-
1

st
ac

k-
2

New PD

CPU Memory Devices

st
ac

k-
2

st
ac

k-
1

Threads
with Isolated

Stacks

73

Open Questions

73

Shared
capabilities or
only copied
capabilities?

How does our design
change if we use

something like CHERI?

Is seL4 the right
substrate for this

work?

Context-Mediated Transactions
and Disaggregated Memory

Pankaj Mehra
Elephance Memory

74

Our Large Context is a Flower of 7-19 dims unrolled in time

75

1995
McCarthy

Facts and
Rules that
axiomatize
a situation
and help us
reason

Context as
Ontology

Reasoning

2010
Dey,Cooke

Context as
Ontology

Cyber-
physical

Context
Engines for
eCommerce
&
Advertising

2025
EKG

Context
Graphs

Petabyte
scale

In-Memory

Index-Free
adjacency

Graph [Databases] deliver contextualization to support new digital transformation initiatives… because messy
data without context can dramatically slow down the AI process. Noel Youhana (Forrester) April 21, 2021

Search → Page Rank, RW
Data: Crawled Content [GBs]

Recomm → Subgraph Isomorphism
Data: Users, Products Entities [TBs]

IPAs→ WSD
Data: Sound, Speech 10s TB

Fraud →
TBs/d x 30-90 d

Hadoop RDF Triple Store In-Memory Relational In-Memory Graph DB & DNN

Context Graphs

76

Example. Whodini (‘10-13): Work Context extracted from email/calendar by applying Speech Act Theory + 47 algorithms against
210M data points / person / year from the 600,000 words each of us write every year!

Helped to disambiguate words like next iteration by
contextualizing and context-clustering on graphs of
Who said what to whom, when

Memory too is evolving in response to PB-scale use cases

77

Disaggregated Memory Node

runs here

to manage this memory

Device-Side MemOS™

Global pointers allows subgraphs
to be created and manipulated

as memory objects
at xPUs and devices

APIs and Language Bindings on the Hosts
allow graph functions (such as convolve @N1)
to be defined and shipped to the device as
easily as operating on that graph data from far
memory locally .

78

Efficient
RPC

Flexible
Placement

Persistent
Pointers

Independent
Scaling

Twizzler.io and UCSC

CX
L

w
or

k
w

ith
 M

em
or

y
In

du
st

ry

Security features for Arm
 CH

ERI

Elephance MemOS™
is a fork of Twizzler

Extreme relevance
of pointers for
near-memory

processing

Protecting
disaggregated memory
against attacks & leaks

beyond
“Mother May I?”

relationship between
memory & server

Continued Collaboration

MemOS™ offloads MI graph operations from CPUs, GPUs

79

Convolution in CNN

Far Memory without MemOS Far Memory with MemOS

CPU chases pointers,
Retrieves neighbor node,
Retrieves local property,
Calculates filter polynomial

DMN chases pointers,
Retrieves neighbor node,
Retrieves local property,
Calculates filter polynomial
Returns convolved values

Many RTTs,
Low goodput,

Cache pollution,
NW flooding,

Rule of 3 penalty

Low latency,
High goodput,

Independent scaling

MI Operations

Pointer chasing

Convolution →

Clustering

In-DB ML Inf Op

Page Rank / RW

Connected Comps

Search-Accumulate

Shortest Paths

Filter-Aggregate

Compression

The Elephant in the Room

George Neville-Neil
Elephance Memory

80

The Good

• Provides a consistent
programming paradigm

• Led to unprecedented increase
in the amount of software

• Better than the fragmented
world of the 1960s-1970s

• Relatively open
• (some caveats apply, void where prohibited, do not

stick in ear.)

The Not So Good

• Plumbing is too visible

• Hidden assumptions

• Narrows thinking about how we
program

• Twists systems to be more like
itself.

• A drag on innovation.

Thoughts to Consider

• How do current computers
actually work?

• What do current programmers
really want?

• What other models are
possible?

• Data Oriented Programming

• Re-think the plumbing
• Don't just hide it

BigQuery in 4 minutes and
30 seconds

Justin Levandoski
Google

84

BigQuery
A serverless, highly scalable, and cost-effective cloud data warehouse

Petabyte-scale
storage

and queries

Encrypted, durable

Real-time analytics on
streaming data

Fully managed,
serverless, clusterless

24/7 Service with >
99.99% uptime

Predictable
Performance

Integrated ML Easy to use SQL
without hints

“BigQuery was serverless before serverless was a thing.”

-Mosha Pasumansky

BigQuery Architecture

SQL:2011
Compliant

Petabit Network

BigQuery High-Available Cluster
ComputeStreaming

Ingest and
Read

Bulk
 Load and

Export

Replicated, Distributed
Storage

REST API

Client
Libraries

In 7
languages

Web UI, CLIDistributed
Memory Shuffle

Tier

Google Infrastructure

“Serverless” Design Principles and Advantages

● Disaggregation of compute, storage, memory
○ On-demand scaling of each resource

○ On-demand sharing of resources

○ Adapts well to multi-tenant usage at lower cost

● Fault tolerance and restartability
○ At scale assume everything is unreliable/slow

○ Query subtasks are deterministic and repeatable

○ Multiple copies of same task dispatched to avoid stragglers

In Memory Shuffle

● BigQuery implements a disaggregated memory-based shuffle
○ RAM/disk managed separately from compute tier
○ Reduced shuffle latency by order-of-magnitude
○ Enables order-of-magnitude larger shuffles
○ Reduced resource cost by 20%
○ Avoid resource fragmentation, stranding, poor isolation

● Persistence in shuffle layer
○ Checkpoint query execution state
○ Allows flexibility in scheduling + execution (preemption of workers)

Dynamic Scheduling

time

slots
Available slots

1000

2000

Query 4

Query 1

Query

Query 5

Query 2

Query 3

Query 4 needs less resources

Query 5 is submitted

Query 4 finishes

Dynamic Query Execution

“[Optimizers] are
making assumptions
about joins five or
six levels up in the
tree based on just
wishful thinking.”

● Dynamic (Re)Partitioning: load balance and adjust parallelism while
adapting to any query or data shape and size

● Dynamic join processing:
○ Example – start with shuffle join, but cancel and switch to

broadcast join if data sizes warrant it

Read / Write API + Streaming

● Read API

○ Read data in parallel directly from BQ storage

○ For consumption by Spark, Presto, Tensorflow, etc, etc…

● Write API

○ Industry-leading stream ingest support at scale

○ Exactly once semantics

○ Stream-level and cross-stream transactions

BigQuery Omni

BigQuery ML

Classification
Logistic regression

DNN classifier (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Regression
Linear regression

DNN regressor (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Other Models
k-means clustering

Time series forecasting

Recommendation:
Matrix factorization

Model Import/Export
TensorFlow models for
batch and online
prediction

Unstructured Data

SELECT * FROM

 ML.PREDICT(MODEL cat_detector,

 SELECT _HANDLE FROM dataset1.images

 WHERE ENDSWITH(filename, 'jpg')

 AND create_time > TIMESTAMP('2021-1-1')

)

CREATE TABLE dataset1.images
WITH CONNECTION 'service_account1'
OPTIONS (uris=['gs://mybucket/*'])

filename create_time generation …

image1.jpg 2021-11-04 2rba7gbp0

image2.jpg 2021-11-05 gbp02rba7

image3.jpg 2021-11-06 p02rbgbgb

The Sugar-free Chocolate of
Databases

Matt Butrovich
Carnegie Mellon University

#1 Ranked CMU-DB PhD Student

Eating Smarter

Food labels in the US are wild.

100

Staring at DBMS Traces

Zero Calorie Queries

● 1,462,909 queries from various workloads…
● CMDBAC data set shows that they are

27% of all queries!

● Look in your SQL logs and you’ll see these queries over and over again!

102

DBMS Proxies to the Rescue

● PgBouncer, RDS Proxy, ProxySQL
● Features:

○ Connection pooling
○ Query rewriting
○ Sharding
○ Query caching

103

What I Do

● Tigger is a proxy that pushes Application Layer (i.e., L7) DBMS protocol logic
into kernel-space via eBPF.

● Perform things like transaction pooling and workload replication without ever
going to user-space. User-bypass.

104

I am graduating in early 2024.
I will be expensive to hire.

https://mattbutrovi.ch

Mehul A. Shah
mehul@aryn.ai
www.linkedin.com/in/mehulashah/

106

Coming out of Codd’s shadow
– search on unstructured data

mailto:mehul@aryn.in

The Zeitgeist

107

● Unstructured data abounds in enterprises
○ growing 3X faster than structured
○ non-consumption: 90% of this data is “dark”

● Data lakes are all the rage
○ lots of attention on structured
○ docs, audio, images, videos, logs, genomes, …
○ don’t know what I have, where it is, and how to synthesize it

● I’ve been under a rock for 5 years
○ new large (transformer) models can … speak English, feed my dogs …
○ 10x / year parameter growth - disrupted overnight
○ open source - download 10GBs from internet

The brilliance of Codd …

108

1970s

relational model
relational calculus
(first-order logic)

relational
algebra

separate app from technology growth
lasted 50 years, 10^10X

what about unstructured data?

map data intoqueries in

Out of Codd’s shadow …

109

2020s

keywords
natural language

image search
recommendations

?
transformer learns the data and the queries

can we understand them? is there an algebra?
what happens for the next 50 years?

public data
modeled in

queries in

alphabet soup of
LLM - transformers

Stop Losing Sleep
Over Losing Data

Doug Terry
Amazon Web Services

110

Customers increasingly fret about

1. Data loss

2. Region failures

Asynchronous
log

log

What can we
do about

RPO?

Option 1: Accept it

log

Region A

log

Region B

Option 1: Accept it

log

Region A

log

Region B

Replication

Option 2: Reconcile it

Leader Board

Frank

Julie

Sarah

KIller

Barry

Region A

Option 2: Reconcile it

Leader Board

Frank

Julie

Sarah

KIller

Barry

Region A Region B

Leader Board

Frank

Spike

Julie

Sarah

Barry

Option 2: Reconcile it

Region A Region B

Replication Leader Board

Frank

Spike

Julie

Sarah

Barry

Leader Board

Frank

Julie

Sarah

KIller

Barry

Option 3: Prevent it

What to do about RPO?

Option 1: Accept it

Option 2: Reconcile it

Option 3: Prevent it

PREVENT RPO

Thank you!

129

