
Large-Scale Systems
The Unreasonable

Effectiveness of Simplicity

Randy Shoup
@randyshoup

Background

@randyshoup

Goals
• From a systems perspective, what characterizes a

scalable, well-engineered system?

• What can (application) systems designers learn
from this community?

• Where are the biggest opportunities to improve
(application) systems?

@randyshoup

• eBay
• 5th generation today
• Monolithic Perl à Monolithic C++ à Java à microservices

• Twitter
• 3rd generation today
• Monolithic Rails à JS / Rails / Scala à microservices

• Amazon
• Nth generation today
• Monolithic Perl / C à C++ / Java services à microservices

Evolving Systems

No one starts with microservices
…

Past a certain scale, everyone ends
up with microservices

@randyshoup

“Make everything as
simple as possible,
but not simpler.”

Large-Scale Systems

•Simple Components

•Simple Interactions

•Simple Changes

Large-Scale Systems

•Simple Components

•Simple Interactions

•Simple Changes

Modular Services
• Service boundaries match the problem

domain

• Service boundaries encapsulate
business logic and data
o All interactions through published service interface
o Interface hides internal implementation details
o No back doors

• Service boundaries encapsulate
architectural -ilities
o Fault isolation
o Performance optimization
o Security boundary

@randyshoup

Orthogonal Domain Logic
• Stateless domain logic

o Ideally stateless pure function
o Matches domain problem as directly as possible
o Deterministic and testable in isolation
o Robust to change over time

• “Straight-line processing”
o Straightforward, synchronous, minimal branching

• Separate domain logic from I/O
o Hexagonal architecture, Ports and Adapters
o Functional core, imperative shell

@randyshoup

Sharding
• Shards partition the service’s “data space”

o Units for distribution, replication, processing, storage
o Hidden as internal implementation detail

• Shards encapsulate architectural -ilities
o Resource isolation
o Fault isolation
o Availability
o Performance

• Shards are autoscaled
o Divide or scale out as processing or data needs increase
o E.g., DynamoDB partitions, Aurora segments, Bigtable

tablets

@randyshoup

Service Layering
• Common services provide and

abstract widely-used capabilities

• Service ecosystem
o Services call others, which call others, etc.
o Graph, not a strict layering

• Services grow and evolve over time
o Factor out common libraries and services as

needed
o Teams and services split like “cellular mitosis”

@randyshoup

Common Platform
• “Paved Road”

o Shared infrastructure
o Standard frameworks
o Developer experience
o E.g., Netflix, Google

• Separation of Concerns
o Reduce cognitive load on stream-aligned

teams
o Bound decisions through enabling constraints

@randyshoup

Large-scale organizations often
invest more than 50% of
engineering effort in platform
capabilities

@randyshoup

Google Service Layering (2013)
• Cloud Datastore: NoSQL service

o Strong transactional consistency
o SQL-like rich query capabilities

• Megastore: geo-scale structured database
o Multi-row transactions
o Synchronous cross-datacenter replication

• Bigtable: cluster-level structured storage
o (row, column, timestamp) -> cell contents

• Colossus: distributed file system
o Block distribution and replication

• Borg: cluster management infrastructure
o Task scheduling, machine assignment

Cloud Datastore

Megastore

Bigtable

Colossus

Cluster manager

Large-Scale Systems

•Simple Components

•Simple Interactions

•Simple Changes

Reactive Manifesto

Event-Driven
• Communicate state changes as

stream of events
o Statement that some interesting thing

occurred
o Ideally represents a semantic domain event

• Decouples domains and teams
o Abstracted through a well-defined

interface
o Asynchronous from one another

• Simplifies component
implementation

@randyshoup

Immutable Log
• Store state as immutable log of events

o Event Sourcing

• Often matches domain
o E.g., Stitch Fix package processing / delivery state

• Log encapsulates architectural –ilities
o Durable
o Traceable and auditable
o Replayable
o Explicit and comprehensible

• Compact snapshots for efficiency

@randyshoup

Embrace Asynchrony
• Decouples operations in time

o Decoupled availability
o Independent scalability
o Allows more complex processing, more

processing in parallel
o Safer to make independent changes

• Simplifies component
implementation

@randyshoup

Embrace Asynchrony
• Invert from synchronous call

graph to async dataflow
o Exploit asymmetry between writes and

reads
o Can be orders of magnitude less

resource intensive

@randyshoup

Amazon Aurora
• Asynchronous redo log writes

o Sent asynchronously to Aurora storage nodes
o Acknowledged asynchronously to database

instance
o No distributed consensus round
o Idempotent, immutable, monotonic

• Quorum acknowledgement
o Log progresses forward once quorum of nodes

acknowledges

• Reestablish consistency on crash
recovery

@randyshoup Verbitski, et al, 2018, Amazon Aurora: On Avoiding Distributed Consensus, SIGMOD ‘18.

https://dl.acm.org/doi/10.1145/3183713.3196937

Netflix Viewing History
• Store and process member’s playback

data
o 1M requests per second
o Used for viewing history, personalization,

recommendations, analytics, etc.

• Original synchronous architecture
o Synchronously write to persistent storage and lookup

cache
o Availability and data loss from backpressure at high

load

• Asynchronous rearchitecture
o Write to durable queue
o Async pipeline to enrich, process, store, serve
o Materialize views to serve reads

@randyshoup Sharma Podila, 2021, Microservices to Async Processing Migration at Scale, QConPlus 2021.

https://www.infoq.com/presentations/migration-microservices-scale

Walmart Item Availability
• Is this item available to ship to this customer?

o Customer SLO 99.98% uptime in 300ms

• Complex logic involving many teams and
domains
o Inventory, reservations, backorders, eligibility, sales caps, etc.

• Original synchronous architecture
o Graph of 23 nested synchronous service calls in hot path
o Any component failure invalidates results
o Service SLOs 99.999% uptime with 50ms marginal latency
o Extremely expensive to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability
• Invert each service to use async events

o Event-driven “dataflow”
o Idempotent processing
o Event-sourced immutable log
o Materialized view of data from upstream dependencies

• Asynchronous rearchitecture
o 2 services in synchronous hot path
o Async service SLOs 99.9% uptime with latency in seconds

or minutes
o More resilient to delays and outages
o Orders of magnitude simpler to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Large-Scale Systems

•Simple Components

•Simple Interactions

•Simple Changes

Incremental Change
• Decompose every large change into small

incremental steps

• Each step maintains backward / forward
compatibility of data and interfaces

• Multiple service versions commonly coexist
o Every change is a rolling upgrade
o Transitional states are normal, not exceptional

Continuous Testing
• Tests help us go faster

o Tests are “solid ground”
o Tests are the safety net

• Tests make better code
o Confidence to break things
o Courage to refactor mercilessly

• Tests make better systems
o Catch bugs earlier, fail faster

@randyshoup

Continuous Testing
• Tests make better designs

o Modularity
o Separation of Concerns
o Encapsulation

@randyshoup

“There’s a deep synergy between
testability and good design. All of the
pain that we feel when writing unit tests
points at underlying design problems.”

@randyshoup

-- Michael Feathers

Continuous Delivery
• Deploy services multiple times per day

o Robust build, test, deploy pipeline
o Canary deployment
o Feature flags
o Dark launches
o SLO monitoring
o Synthetic monitoring

• More solid systems
o Release smaller, simpler units of work
o Smaller changes to roll back or roll forward
o Faster to repair, easier to understand, simpler to diagnose
o Increase rate of change and reduce risk of change

@randyshoup

In the limit, production
monitoring and software testing
become the same thing

@randyshoup

Software Delivery

@randyshoup

• State of DevOps Surveys
o 8 yearly surveys from 2014-2021
o 31,000 survey responses
o Rigorous scientific methodology

• Summarized in Accelerate

Software Delivery

@randyshoup State of DevOps Report, 2021

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

• Cross-company Velocity Initiative to
improve software delivery
o Think Big, Start Small, Learn Fast
o Iteratively identify and remove bottlenecks for teams
o “What would it take to deploy your application every

day?”

• Doubled engineering productivity
o 5x faster deployment frequency
o 5x faster lead time
o 3x lower change failure rate
o 3x lower mean-time-to-restore

• Prerequisite for large-scale architecture
changes@randyshoup

Continuous Delivery

Large-Scale Systems

•Simple Components

•Simple Interactions

•Simple Changes

Thank you!

@randyshoup

linkedin.com/in/randyshoup

medium.com/@randyshoup

