Large-Scale Systems

The Unreasonable
Effectiveness of Simplicity

Randy Shoup
@randyshoup



Background
e\ Google

wework

STITCH FIX

@randyshoup



Goals

 From a systems perspective, what characterizes @
scalable, well-engineered system®e

« What can (application) systems designers learn
from this communitye

 Where are the biggest opportunities to improve
(application) systems?

@randyshoup



Evolving Systems

« eBay
. 5th generation today
. Monolithic Perl > Monolithic C++ = Java = microservices

e Twitter

« 39 generation today
. Monolithic Rails = JS / Rails / Scala = microservices

e AmMazon

. Nth generation today
. Monolithic Perl / C = C++ / Java services = microservices



No one starts with microservices

Past a certain scale, everyone ends
up with microservices

@randyshoup



“Make everything as
simple as possible,
but not simpler.”




Large-Scale Systems

e Simple Components

e Simple Interactions

€€«

eSimple Changes




Large-Scale Systems

eSimple Components

€€«



Modular Services

Service boundaries match the problem

domain

Service boundaries encapsulate
business logic and data
o Allinteractions through published service interface

o Interface hides internal implementation details
o No back doors

Service boundaries encapsulate
architectural -ilities

o Fault isolation

o Performance optimization

o Security boundary

@randyshoup



Orthogonal Domain Logic

Stateless domain logic
o ldeally stateless pure function
o Matches domain problem as directly as possible
o Deterministic and testable in isolation
o Robust to change over time

“Straight-line processing”
o Straightforward, synchronous, minimal branching

Separate domain logic from |/O
o Hexagonal architecture, Ports and Adapters
o Functional core, imperative shell

@randyshoup



Sharding

« Shards partition the service's “data space”

o Units for distribution, replication, processing, storage
o Hidden as internal implementation detail

« Shards encapsulate architectural -ilities
o Resource isolation
o Faultisolation
o Availability
o Performance

« Shards are autoscaled

o Divide or scale out as processing or data needs increase

e F | ET)ynOmoDB partitions, Aurora segments, Bigtable
ablets

@randyshoup



Service ecosystem

Common services provide and
o Services call others, which call others, etc.
o Graph, not a strict layering
Services grow and evolve over time
o Factor out common libraries and services as
needed
o Teams and services split like “cellular mitosis”

@randyshoup




Common Platform

 "Paved Road”
o Shared infrastructure
o Standard frameworks ...
o Developer experience
o E.g., Netflix, Google
« Separation of Concerns ..

o Reduce cognitive load on stream-aligned

o Bound decisions through enabling constraints

@randyshoup



Large-scale organizations often
invest more than 50% of
engineering effort in platform
capabilities

@randyshoup



Google Service Layering (2013)

 Cloud Datastore: NoSQL service Cloud Datastore
o Strong transactional consistency
o SQL-like rich query capabilities

« Megastore: geo-scale structured database Megastore

o Multi-row transactions
o Synchronous cross-datacenter replication

- Bigtable: cluster-level structured storage Bigtable
o (row, column, timestamp) -> cell contents

« Colossus: distributed file system
o Block distribution and replication

« Borg: cluster management infrastructure
o Task scheduling, machine assignment Cluster manager

Colossus

l‘ l‘ l‘ l‘l



Large-Scale Systems

e Simple Interactions

€€«



Reactive Manifesto

1 he Reactive Manitesto

Published on September 16 2014. (v2.0)

Organisations working in disparate domains are independently discovering
patterns for building software that look the same. These systems are more
robust, more resilient, more flexible and better positioned to meet modern
demands.

These changes are happening because application requirements have changed
dramatically in recent years. Only a few years ago a large application had tens
of servers, seconds of response time, hours of offline maintenance and
gigabytes of data. Today applications are deployed on everything from mobile
devices to cloud-based clusters running thousands of multi-core processors.
Users expect millisecond response times and 100% uptime. Data is measured in
Petabytes. Today's demands are simply not met by yesterday’s software
architectures.

We believe that a coherent approach to systems architecture is needed, and we
believe that all necessary aspects are already recognised individually: we want
systems that are Responsive, Resilient, Elastic and Message Driven. We call
these Reactive Systems.




Event-Driven

« Communicate state changes as
sfream of events

o Statement that some interesting thing
occurred

o ldedlly represents a semantic domain event

 Decouples domains and teams
.'-'_- _. o Abstracted through a well-defined
interface

o Asynchronous from one another

« Simplifies component
implementation

@randyshoup



Immutable Log

@randyshoup

Store state as immutable log of events
o Event Sourcing

Often matches domain
o E.g., Stitch Fix package processing / delivery state

Log encapsulates architectural —ilities
o Durable
o Traceable and auditable
o Replayable
o Explicit and comprehensible

Compact snapshots for efficiency



Embrace Asynchrony

 Decouples operations in fime

o Decoupled availability
o Independent scalability
Allows more complex processing, more

O
processing in parallel
._____ _. o Safer to make independent changes

« Simplifies component
Implementation

@randyshoup



Embrace Asynchrony

* |Invert from synchronous call

graph to async dataflow

o Exploit asymmetry between writes and
reads

o Can be orders of magnitude less
) resource intensive

@randyshoup



Amazon Aurora

Industry 3: DB Systems in the Cloud and Open Source SIGMOD" 18, June 10-15, 2018, Houston, TX, USA

Amazon Aurora: On Avoiding Distributed Consensus for 1/Os,
Commits, and Membership Changes

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corcy Kamal Gupta
Murali Raman Mittal, Sailesh Sandor Maurice
Tengiz Kharatishvilli, Xiaofeng Bao
‘Amazon Web Services

arpose bul or Anmn.D ing so networking

loss of data,
heals Traditional i

Zone (A2). An AZ e 8 subset of a Region
. mmughlowu cy e

&
and amplify cost o

by establishin
ing so improves performance, reduc

KEYWORDS
Databases; Distributed Systems; Log Processing; Quorum Models;
@ ets; Replication; R Perf

ts and leveraging local transi o- six e write
educes variability, and lowers costs. d lustrate 1. Aurora

Qu dels, such as the one used by Iy used
datab lhzy

durabilty
We belev thi i because the undelying distrbuted slgor d\m
) Pe

Seanbe

perf
omal rlational database e running o1

789

@randyshoup

« Asynchronous redo log writes

o Sent asynchronously to Aurora storage nodes

o Acknowledged asynchronously to database
instance

o No distributed consensus round
o ldempotent, immutable, monotonic

« Quorum acknowledgement

o Lo% progresses forward once quorum of nodes
nowledges

« Reestablish consistency on crash
recovery

Verbitski, et al, 2018, Amazon Aurora: On Avoiding Distributed Consensus, SIGMOD “18.



https://dl.acm.org/doi/10.1145/3183713.3196937

Nettlix Viewing History

« Store and process member’s playback
data
o 1M requests per second

o Used for viewing history, personalization,
recommendations, analyfics, etc.

« Qriginal synchronous architecture

o Synchronously write to persistent storage and lookup
cache

Durable queues o lAv%illobiIiTy and data loss from backpressure at high
o]e

« Asynchronous rearchitecture

o Write to durable queue
o Async pipeline to enrich, process, store, serve
o Materialize views to serve reads

@randyshoup Sharma Podila, 2021, Microservices to Async Processing Migration at Scale, QConPlus 2021.



https://www.infoq.com/presentations/migration-microservices-scale

Walmart Item Availability

« |s this item available to ship to this customer?
o Customer SLO 99.98% uptime in 300ms

« Complexlogic involving many feams and

domains
o Inventory, reservations, backorders, eligibility, sales caps, etc.

Walmart . Original synchronous architecture

Save money. Live better. Graph of 23 nested synchronous service calls in hot path
Any component failure invalidates results

Service SLOs 99.999% uptime with 50ms marginal latency
Extremely expensive to build and operate

0O O O O

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.



https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

Walmartcom

*

Item availability

,—f

Global item Warehouse-item
availability API availability API
4 AA4
Store Inventory
Availability

T T‘ |
Legacy Storelfl Szl Store Inventory Legacy
Legac ore Hoor backroom Backorder i
reser\g}ati\:ms Backorders store inventory i 5 cache ol item
inventory EHERT e eligibility

Global item Warehouse-item
availability cache availability cache

Global warehouse
item inventory

inventor

Warehouse
Item eligibility Warehouse inventory eligibility

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.



https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

* Invert each service to use async events

©)

O
O
O

Event-driven “dataflow”

ldempotent processing

Event-sourced immutable log

Materialized view of data from upstream dependencies

« Asynchronous rearchitecture

Walmart ;

Save money. Live better. o

2 services in synchronous hot path

Async service SLOs 99.9% uptime with latency in seconds
or minutes

More resilient to delays and outages
Orders of magnitude simpler to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.


https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

Sales caps Walmartcom

Warehouse & store f
eligibility
Warehouse inventory Item availability API
Item eligibility

3" party inventory

Warehouse & store

: Warehouse- Global item
Inventory

Store onhand item & store- availability
inventory item
Backorders/locks

Availability datastore

availabilit
Store backroom i

inventor ;
Y Reservations/orders

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.



https://www.youtube.com/watch?v=FskIb9SariI

Large-Scale Systems

e Simple Changes

€€«



Incremental Change

Decompose every large change into small
Incremental steps

Each step maintains backward / forward
compatibility of data and interfaces

Multiple service versions commonly coexist

o Every change is arolling upgrade
o Transitional states are normal, not exceptional



Continuous Testing

« Tests help us go faster

o Tests are “solid ground”
o Tests are the safety net

e Tests make better code

o Confidence to break things
o Courage to refactor mercilessly

« Tests make beftter systems
o Catch bugs earlier, fail faster

@randyshoup



Continuous Testing

« Tests make better designs
o Modularity
o Separation of Concerns
o Encapsulation

@randyshoup



“There’s a deep synergy between
testability and good design. All of the
pain that we feel when writing unit tests
points at underlying design problems.”

- Michael Feathers

@randyshoup



Continuous Delivery

« Deploy services multiple times per day
Robust build, test, deploy pipeline

Canary deployment

Feature flags

Dark launches

SLO monitoring

Synthetic monitoring

O 0O O O O O

 More solid systems
o Release smaller, simpler units of work
o Smaller changes to roll back or roll forward
o Faster to repair, easier to understand, simpler to diagnose
o Increase rate of change and reduce risk of change

@randyshoup



In the limit, production
monitoring and software testing
become the same thing

@randyshoup



Software Delivery

IURIEIOE - Siafc of DevOps Surveys
ACCELE RATE o 8yearly surveys from 2014-2021
Building and Scaling High Performin
Tschnology ngrgafizations : O 3] ,OOO Survey responses

o Rigorous scientific methodology

« Summarized in Accelerate

Nicole Forsgren, PhD
Jez Humble ond Gene Kim

@randyshoup



Software Delivery

2018 2019 2021
20% 26%
Elite Elite
23%
High
S 40%
High
O
44%
Medium
© 28%
Medium
12% ©
Low 7%
O Low o

@randyshoup State of DevOps Report, 2021



https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

Continuous Delivery

ebY

@randyshoup

Cross-company Velocity Initiative to
improve software delivery

o Think Big, Start Small, Learn Fast
o lteratively identify and remove bottlenecks for teams

e ‘(‘jWhé]T would it take to deploy your application every
Oy c "

Doubled engineering productivity
o b5x faster deployment frequency
o b5x fasterlead time
o 3xlower change failure rate
o 3x lower mean-time-to-restore

Prerequisite for large-scale architecture
changes



Large-Scale Systems

e Simple Components

e Simple Interactions

€€«

eSimple Changes




Thank you!

yW @randyshoup

m inkedin.com/in/randyshoup

m medium.com/@randyshoup



