Formal Modeling and Analysis of Distributed
Systems

Finding Critical Bugs Early!

Ankush Desai (ankushpd@) <:r |
Sr. Applied Scientist, https://github.com/p-org/P

Database Systems @ Amazon Web Services

P language Formal modeling and analysis of distributed systems

Its not just about the Proofs, its also about the Process!

P language Formal modeling and analysis of distributed systems

Programming Distributed Systems is Challenging!

Throughput
Scalability
Latency
Multi region
Timeouts Avallablllty
[Network Partitioning 99.99...% Eventual consistency
Message loss : .
] Failures Consistency
Node failure ¢ Q Strong consistency Serializability
[° '—

Synchrony Asynchrony <

Concurrency o

Message Interleaving

Multiple Components/Protocols

"~ Compositional

Micro servi .
ces Complex Interactions

Incorrect Assumptions

Not uncommon to find bugs in production after
deployment

Development

Guard Rails Guard Rails

Formal Methods!

“formal methods: any process that involves writing formal specifications
and checking systems behavior against those specifications”

Thinking abstractly, formally, above coding

People confuse
Programming with Coding.
Coding is to Programming
what Typing is to Writing

Key is to abstract away unwanted details and think
of the system above coding, that improves
developers ability to understand systems better.

You don’t understand something until you’ve written
it down carefully — carefully enough to explain it to
somebody else (formal models). And if you haven’t

done that, you’re just thinking you understand it,

From Talks:

\

How to think clearly as a programmer with mathematics and

The Man Who Revolutionized Computer Science With Math

TLA+ - Leslie Lamport @ HLF 2019

Challenges with wide spread adoption of Formal
Methods!

* [Steep Learning Curve] : X is not programmer friendly ..

- Mathematical modeling language, huge overhead of maintaining the
models

« Formal design and implementation go out of sync.

« Developers think of distributed system as communicating state
machines, instead of a monolithic state transition system.

 [Scalability]: X does not scale for verification of real-world distributed
systems.

* Fails to find deep or corner case bugs.

* [Connection to Implementation]: what about the gap between design
and implementation.

X is any formal methods tool.

<r (https://github.com/p-org/P)

* P is astate-machine based programming framework for
modeling, specifying, and formal reasoning of distributed
SyStemS. machine Client

var server : Server;
var nextReqld : int;

* P program is a collection of asynchronously communicating var lastSuccessfulRespld: int;
state machines.

start state Init {

Models and specifications are implemented as state machines. entry (payload : Server)
}
e P supports a scalable backend checker. . ———
State-of-the-art techniques to scale analysis to large distributed ¢ entry
systems

on eResponse do (resp: tResponse)

on eRequest goto ServiceRequests;

}

}

P Specifications: Runtime Monitors

- * Specifications are runtime
' monitors that listen to
AlternatingAB observes eA, eB { mesSages, maintain local
var lastVal: int; state, and assert global
start state Wai‘.cFor‘A { . invariants!
on eA goto WaitForB with (payload:
assert payload > lastVal;
lastVal = payload; . .
} ¢ SpeC|f|cat|0ns are programs!

hy

state WaitForB {

on eB goto WaitForA with (payload:

assert payload > lastVal;
lastVal = payload;

P language Formal modeling and analysis of distributed systems

P Tutorials and Documentation
https://p-orqg.qithub.io/P/

’ P on Github
. Home o\ Search 2.5k Stars - 147 Forks

P Table of contents
Home Let the fun begin!
What is P?

Getting Started >

Tutorials >

Advanced User Guide >

Language Manual >

Case Studies Formal Modeling and Analysis of Distributed Systems

Videos

publications

Contributing to P >

Challenge: Distributed systems are notoriously hard to get right. Programming these systems is
challenging because of the need to reason about correctness in the presence of myriad possible
interleaving of messages and failures. Unsurprisingly, it is common for service teams to uncover
correctness bugs after deployment. Formal methods can play an important role in addressing
this challenge!

P Overview: P is a state machine based programming language for formally modeling and
specifying complex distributed systems. P allows programmers to model their system design as
a collection of communicating state machines. P supports several backend analysis engines
(based on automated reasoning techniques like model checking and symbolic execution) to
check that the distributed system modeled in P satisfy the desired correctness specifications.

Impact: P is currently being used extensively inside Amazon (AWS) for analysis of complex
distributed systems. For example, Amazon S3 used P to formally reason about the core
distributed protocols involved in its strong consistency launch. Teams across AWS are now using
P for thinking and reasoning about their systems formally. P is also being used for programming
safe robotics systems in Academia. P was first used to implement and validate the USB device
driver stack that ships with Microsoft Windows 8 and Windows Phone.

Experience and lessons learned: In our experience of using P inside AWS, Academia, and
Microsoft. We have observed that P has helped developers in three critical ways: (1) P as a
thinking tool: Writing formal specifications in P forces developers to think about their system
design rigorously, and in turn helped in bridging gaps in their understanding of the system. A
large fraction of the bugs can be eliminated in the process of writing specifications itself! (2) P
as a bug finder: Model checking helped find corner case bugs in system design that were missed
by stress and integration testing. (3) P helped boost developer velocity: After the initial overhead
of creating the formal models, future update,s and feature additions could be rolled out faster as
these non-trivial changes are rigorously validated before implementation.

https://p-org.github.io/P/

History of P e o

Users in Microsoft

Building Windows 8 — Windows Azure Office
An inside look from the Windows engineering team
MSDN Blogs > Building Windows 8 > Building robust USB 3.0 support (P) (P#) Off'lce Client
Building robust USB 3.0 support .
e sy g s s s g USB host Node Service
USB function Batch Service

One of the i ith virtual device development underway, we started designing and prGtotyping. USB software | UART Class extension Learn]ng Service

for new hardpecause it has to manage hubs and devices while still dealing witlr8ny errors, To create somethin

at supportinglongevity we needed to visualize and document the flow. lesigned three massive flow charts Hid ClaSS AZSM
s fode to ically convert a Visio diagrgafinto software. Together with Microsoft R
”°;mg"l”’b°’d e refined a tool called Zing, which could validagp€lery aspect of this software model. USB Type C StaCk CAT (ConneCted Car)
and available] : : .
o e Media Agnostic USB Blockchains
by Dennis Fi .
ol iz Bluetooth
With throughput up r4 . .

In collaboration with UPenn Grasp lab, we used P for
programming safe robotics systems for Dgggg demos.

Users in Academia

* Used P to model and verify distributed IEEE 1588
Precision time protocol [CAV 2015].
¢ Used as a standard in telecommunication, industrial
automation, and CERN LHC particle accelerator.

* We were able to reproduce a long debated bug of
“endlessly circulating frames” in IEEE1588 using our
verification approach.

e The counter example was confirmed using a simulator
and well received by the IEEE 1588 standards community.

'MODULAR AND SAFE EVENT-DRIVEN PROGRAMMING 1"

Formal Reasoning of S3 Strong Consistency Design using P

AWS News Blog

Amazon S3 Update - Strong Read-After-Write Consistency

y Jeff Barr | on 01 DEC 2020 | in Amazon Simple Storage Services (S3), Launch, News | Permalink | ® Comments | # Share

.-4 Marc Brooker
-

Very cool to see TLA+, P, and Dafny code on the
keynote stage at AWS re:Invent.

WS feomputepstorage,
to rg3Sah AN their
cols. satisfies desired

SSSSSSSSS specifications.

o

Lessons Learned (P as a Thinking Tool)

Formal Modeling: “P as a Thinking Tool”

Design as reference executable specification, bridges the gap in understanding.

u H 2
Formal Models How the system does what it is supposed to do?

(PSrc) Think about detailed design, interaction with other components, messages
exchanged, assumptions about other components.

Formal “Does the system do what it is supposed to do?”
Specifications Safety and liveness properties. Global invariants both external and internal
(PSpec) that the system must satisfy.

“What inputs and faults can the system tolerate?”

Think about the kind of inputs and faults the system must tolerate.

Lessons Learned (P as a systematic explorer or bug finder)

Model Checking: “P as a Systematic explorer or bug finder”
Uncover non-trivial bugs/scenarios, gain confidence in design.

P Checker: Systematically explores nondeterministic behaviors.

e Two forms of non-determinism:
* Data non-determinism (e.g., all possible inputs, random(), timeouts)
* Scheduling non-determinism (e.g., interleaving of messages, failures)

Model Checking as a search problem

System state

Interleaving messages or failures or threads
.

b

Scalable Exploration: Partial Order Reduction, Search Prioritization, Symbolic Execution,

Continued Assurance

* Leverage AWS to scale systematic exploration:
* Explore billions of states using 100s of compute nodes every day.
* Explore combinations of rare events (extremely low probability).

* Integrate model checking into CI/CD pipeline.

. Model

16

Lessons Learned (P boosts velocity of developers)

* Maintenance (quick iterations): “P boosts velocity of developers”

Rapid iterations, release features faster, eliminate bugs early instead of
in production.

Service teams can try out risky optimizations or protocol changes first
using P, gain confidence, and then mimic those changes in the
implementation.

Higher confidence in design before moving to implementation.

What about connection to Implementation?

* We want to check specifications on the system implementation.

(Implementation) (Specification)

» Systems already produce service logs!

What about connection to Implementation?

* Runtime monitoring is a well-known technique for checking that a
system trace satisfies a desired property.
* Trace = Service log
* Property = P specification

(Service log) (Specification)

* Idea: Check P Specifications on service logs!

On spec violation, alert user or report
to upstream monitoring service

"
i %
Timber %%

Timestamped but Timestamped and
Log unordered P events Event ordered P events Event
_

parser sequencer demultiplexer

Stream Processing functionality built using Apache Flink

Local Junit
test harness

On spec violation, Junit throws test failure exception

PObserve architecture; components in [2ili2)2 are service-specific and are provided by developers.

20

Improving observability of distributed systems
using formal specifications.

We define distributed systems’ observability as the ability to
check formal specifications at all the phases of development
lifecycle (design, testing, and production).

Its not just about the Proofs, its also about the Process!

: I https://github.com/p-org/P

P language Formal modeling and analysis of distributed systems

