
Formal Modeling and Analysis of Distributed
Systems

Ankush Desai (ankushpd@)
Sr. Applied Scientist,
Database Systems @ Amazon Web Services

Finding Critical Bugs Early!

https://github.com/p-org/P

P language Formal modeling and analysis of distributed systems

P language Formal modeling and analysis of distributed systems

Formal Methods
Its not just about the Proofs, its also about the Process!

Programming Distributed Systems is Challenging!

Desired Specification

Scalability
Latency

Throughput

Availability
Multi region

99.99…%

Consistency
Eventual consistency

Strong consistency Serializability

ComplexityCompositional
Multiple Components/Protocols

Micro services Complex Interactions

Incorrect Assumptions

Guaranteeing correctness is hard as programmers have to reason about myriad
interleaving of messages and failures.

Concurrency
AsynchronySynchrony

Message Interleaving

Failures

Timeouts

Node failure

Message loss
Network PartitioningNon determ

inism

Traditional testing approaches fail to provide the strong assurance!

Not uncommon to find bugs in production after
deployment

Design Development Deployment

Guard Rails Guard Rails

Formal Methods!

“formal methods: any process that involves writing formal specifications
and checking systems behavior against those specifications”

Thinking abstractly, formally, above coding
People confuse

Programming with Coding.
Coding is to Programming
what Typing is to Writing

You don’t understand something until you’ve written
it down carefully – carefully enough to explain it to
somebody else (formal models). And if you haven’t
done that, you’re just thinking you understand it,

Key is to abstract away unwanted details and think
of the system above coding, that improves

developers ability to understand systems better.

From Talks:

Challenges with wide spread adoption of Formal
Methods!

• [Steep Learning Curve] : X is not programmer friendly ..
• Mathematical modeling language, huge overhead of maintaining the

models
• Formal design and implementation go out of sync.
• Developers think of distributed system as communicating state

machines, instead of a monolithic state transition system.

• [Scalability]: X does not scale for verification of real-world distributed
systems.
• Fails to find deep or corner case bugs.

• [Connection to Implementation]: what about the gap between design
and implementation.

X is any formal methods tool.

(https://github.com/p-org/P)

• P is a state-machine based programming framework for
modeling, specifying, and formal reasoning of distributed
systems.

• P program is a collection of asynchronously communicating
state machines.

Models and specifications are implemented as state machines.

• P supports a scalable backend checker.
State-of-the-art techniques to scale analysis to large distributed
systems

P Specifications: Runtime Monitors

• Specifications are runtime
monitors that listen to
messages, maintain local
state, and assert global
invariants!

• Specifications are programs!

P language Formal modeling and analysis of distributed systems

P Tutorials and Documentation
https://p-org.github.io/P/

https://p-org.github.io/P/

History of P (Slides taken from my PhD. talk)

Formal Reasoning of S3 Strong Consistency Design using P

Formal Models
(P state machines)

detailed design, interaction with other components

Specifications
(P state machines)

safety and liveness properties (e.g., consistency)

P Checker
Systematically explore
state space to check if
model of a system
satisfies desired
specifications.

Service teams across AWS (compute, storage,
databases) are using P to reason about their
core distributed protocols.

Lessons Learned (P as a Thinking Tool)

Formal Modeling: “P as a Thinking Tool”
Design as reference executable specification, bridges the gap in understanding.

Formal Models
(PSrc) Think about detailed design, interaction with other components, messages

exchanged, assumptions about other components.

“How the system does what it is supposed to do?”

Formal
Specifications

(PSpec)
Safety and liveness properties. Global invariants both external and internal
that the system must satisfy.

“Does the system do what it is supposed to do?”

Inputs and Fault
Modeling

(PTst)
Think about the kind of inputs and faults the system must tolerate.

“What inputs and faults can the system tolerate?”

Lessons Learned (P as a systematic explorer or bug finder)

Model Checking: “P as a Systematic explorer or bug finder”
Uncover non-trivial bugs/scenarios, gain confidence in design.

P Checker: Systematically explores nondeterministic behaviors.

• Two forms of non-determinism:
• Data non-determinism (e.g., all possible inputs, random(), timeouts)
• Scheduling non-determinism (e.g., interleaving of messages, failures)

Model Checking as a search problem

System state

Scalable Exploration: Partial Order Reduction, Search Prioritization, Symbolic Execution,
..

a

Interleaving messages or failures or threads

b

b a a b

Continued Assurance

• Leverage AWS to scale systematic exploration:
• Explore billions of states using 100s of compute nodes every day.
• Explore combinations of rare events (extremely low probability).

• Integrate model checking into CI/CD pipeline.

16

Design Model
Check Code Test Deploy

Lessons Learned (P boosts velocity of developers)

• Maintenance (quick iterations): “P boosts velocity of developers”
Rapid iterations, release features faster, eliminate bugs early instead of
in production.

Service teams can try out risky optimizations or protocol changes first
using P, gain confidence, and then mimic those changes in the
implementation.

Higher confidence in design before moving to implementation.

What about connection to Implementation?

• We want to check specifications on the system implementation.

• Systems already produce service logs!

18

(Implementation) (Specification)

What about connection to Implementation?

• Runtime monitoring is a well-known technique for checking that a
system trace satisfies a desired property.
• Trace = Service log
• Property = P specification

19

(Specification)(Service log)

• Idea: Check P Specifications on service logs!

20

Overview
• P is a state machine-based modeling language used to design,

model, and verify complex distributed systems.

• P has enjoyed widespread use at AWS (S3, EBS, EC2, DBS, and
IAM) to formally reason about system design and behavior. P
specs are currently used only for design validation.
However… does it have to be this way?

• PObserve performs runtime monitoring of real-world
distributed systems against P specifications during both
testing and in production, integrating P specs into the
complete software design lifecycle!

Checking P Specs during testing
• P specs can be integrated into existing Log4J test suites with a

single additional Java annotation.

Features
• Seamless! PObserve integrates with service log infrastructure

and unit test frameworks already enjoyed by service owners.
• Scalable! PObserve is built atop battle-hardened model-

checkers and event-processing frameworks!
• Observable! PObserve reduces logs to abstract behavior,

yielding an execution trace on a specification violation!
• End-to-End! Plug your event-generating source and your

runtime monitor into PObserve and we take care of the rest!

Checking P Specs from service logs
• P specs can be checked against services’ logs stored locally or

in Timber/S3 with a developer-supplied parser function.

Ordering of events
• PObserve events are interval-timestamped by remote machine

wall-clock and NTP bounds.
• Currently, the sequencer sorts events by sampling a timestamp

from this interval; more sophisticated sorting policies via partial
or total state space exploration are planned as future work.

Performance evaluation
• For production runtime monitoring, PObserve must be able to

keep up with production logs from real services.
• PObserve can parse, sequence, and monitor hourly S3 storage

node logs (each are ~40GB in size, containing approximately 28
million events) in 5m38s on average, making it suitable for
consuming real-world traffic.

• Deployment and scaling on EMR is planned as future work.

Case studies
• Aurora developers have used PObserve to validate atomicity

guarantees for Aurora’s distributed commit protocol.
• We are using PObserve to validate strong consistency guarantees

of S3.
• Stay tuned for future results!

PObserve: Improving Observability of
Distributed Systems using Formal Specifications

Nathan Taylor
Beyazit Yalcinkaya
Ankush Desai

Timber
Logs

Local Junit
test harness

P spec

P spec

Concurrent logs

Se
quen

tia
l lo

g

Timestamped but
unordered P events

Timestamped and
ordered P events Event

demultiplexer

On spec violation, Junit throws test failure exception

On spec violation, alert user or report
to upstream monitoring service

Event
sequencer

Log
parser

Stream Processing functionality built using Apache Flink

PObserve architecture; components in orange are service-specific and are provided by developers.

public static class KVLogParser implements Function<String, Stream<PObserveEvent<PEvent>>> {
/* Consumes one log line and produces zero or more timestamped P events. */
public Stream<PObserveEvent<PEvent>>> apply(String line) {

if (line.startsWith("GET")) return Stream.of(new PObserveEvent(new GetEvent(…)));
if (line.startsWIth("PUT")) return Stream.of(new PObserveEvent(new PutEvent(…)));
return Stream.of(); /* An empty returned stream discards this log line. */

}
}

/* Some class that we would like to test. */
class KVStore<K, V> {

private Logger logger;
public V get(K k) { … }
public void put(K k, V v) { … }

}

/* A specification is written in P and extracted
* to Java by the P compiler. */

spec LinearizabilitySpec observes eGet, eReq {
var ghostState: map[int, int];
…

}

import punit.annotations.PSpecTest;
@PSpecTest(

/* Instances of the KVStore class should have a Log4J shim inserted... */
impl = KVStore.class,
/* ... such that its log output is parsed and processed into P events … */
parser = KVParser.class,
/* ... Which are sent to and validated by this P specification! */
spec = LinearizabilitySpec.class)

public void testKVStore() {
KVStore<String, String> s = new KVStore();
s.put("K1", "V1"); // In the test body, drive the implementation as you normally
s.get("K1"); // would, and the spec's invariants are checked automatically!

}

Improving observability of distributed systems
using formal specifications.

We define distributed systems’ observability as the ability to
check formal specifications at all the phases of development
lifecycle (design, testing, and production).

P language Formal modeling and analysis of distributed systems

P language Formal modeling and analysis of distributed systems

Formal Methods
Its not just about the Proofs, its also about the Process!

https://github.com/p-org/P

