
A data-first, hands-free, distributed
programming model

Achilles Benetopoulos (abenetop@ucsc.edu)

1

Motivation

2

Use Case – Word Frequency

wordcount

Carol

workstation / server

3

Use Case – Word Frequency

wordcount

server
server

server
server

Carol

4

Use Case – Word Frequency

framework-adapted wordcount

Distribution Framework (MR, Spark, etc.)

server
server

server
server

Carol

5

Shortcomings of Existing Approaches

● Users have to think about their problem through the underlying system’s
mechanisms

6

Use Case – Distributed Graph Processing

Alice

Available
machines

7

Use Case – Distributed Graph Processing

Alice

Practice of Streaming Processing of Dynamic Graphs: Concepts, Models, and Systems (IEEE TPDS)
8

Shortcomings of Existing Approaches

● Users have to think about their problem through the underlying system’s
mechanisms

● Users are limited in what they can express because of the underlying
system’s distribution details

9

Short-lived computations over structured data

10

Use Case - Microservice Meshes

11Uber’s microservice architecture from Jaeger (2018)

Shortcomings of Existing Approaches

● Users have to think about their problem through the underlying system’s
mechanisms

● Users are limited in what they can express because of the underlying
system’s distribution details

● Systems have a hard time adapting end-to-end dynamically

12

Could We Do Better?

● Users have to think about their problem through the underlying system’s
mechanisms

○ Could we fulfill the promise of transparent distribution?

● Users are limited in what they can express because of the underlying
system’s distribution details

○ Could we do so while exposing a truly general-purpose programming model?

● Systems have a hard time adapting end-to-end dynamically
○ Could we use this model to construct more flexible systems?

13

Foundations

14

Compute () and data ()

time

15

delete()

time

init()

16

Compute () and data ()

Objects: Organizing Memory

A typed region of semantically-related data items.

Unique, invariant identity in a global address space.

Object<T>

123:
Object are mobile.

17

Objects: Organizing Memory

Object<T>

123:

Object<T>

789:

Object<T>

456:

Host A
18

Objects: Organizing Memory

Object<T>

123:

Object<T>

789:

Object<T>

456:

Host A

Host B

19

Nanotransactions: Organizing Computation

A constrained data access mechanism.

All accesses to objects happen only through nanotransactions.
● Unrestricted access to (shared) data makes it harder for the runtime to assist in distribution
● Transactional semantics ease the burden of consistency

20

Nanotransactions: Organizing Computation

Nanotransactions are also mobile.

From the perspective of the nanotransaction, all data is local.

Local computation is much easier to express correctly.

21

Objects + Nanotransactions: Organizing Distribution

Our ask: factor your program into composable
operations over local data.

Our promise: the runtime will do the right thing*.

* maintain the integrity of their data, while optimally orchestrating execution 22

Possible because of:
● the visibility into application semantics
● the freedom around protocol

Use cases, through the data lens

23

Use case – Word Frequency

struct Document {
 lines : List<String>;
}

struct FrequencyAggregator {
 frequencies: Map<String, Counter>;
}

24

Use case – Word Frequency

Carol

server

. . .

Document

server
Document

server
Document

(1) count()

25

Use case – Word Frequency

server

. . .

server
Document

server
Document

Document

count(,)

FrequencyAggregator

(2)

26

Use case – Word Frequency

Carol

server

. . .

Document

server
Document

server
Document

(3)
Result
Merging

27

Use case – Distributed Graph Processing

28

Use case – Distributed Graph Processing

29

Local code, but actually distributed

30

Use Case - Microservice Meshes

Teams now maintain models of their data, and a set of nanotransactions.

Any computation is free to happen anywhere in the cluster, since data is free
to move to any machine.

31

Takeaways

There is an opportunity to reconsider how we distribute.

● Objects
○ Invariant references
○ Global Address Space
○ Mobility

● Nanotransactions
○ Shippable, local computation
○ Transactional semantics

● Objects + nanotransactions
○ The runtime can peek into the application’s semantics
○ Can effectively orchestrate execution

32

If we take a data-first approach…

… we can distribute computation in a hands-free way for users…

… while also enabling more flexible systems.

Just follow the data!

33

Achilles Benetopoulos (abenetop@ucsc.edu, @singingcircuits)
twizzler.io

mailto:abenetop@ucsc.edu

