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Use Case – Word Frequency
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Use Case – Word Frequency
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Use Case – Word Frequency

framework-adapted wordcount
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Shortcomings of Existing Approaches

● Users have to think about their problem through the underlying system’s 
mechanisms
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Use Case – Distributed Graph Processing
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Use Case – Distributed Graph Processing

Alice

Practice of Streaming Processing of Dynamic Graphs: Concepts, Models, and Systems (IEEE TPDS)
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Shortcomings of Existing Approaches

● Users have to think about their problem through the underlying system’s 
mechanisms

● Users are limited in what they can express because of the underlying 
system’s distribution details
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Short-lived computations over structured data
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Use Case - Microservice Meshes

11Uber’s microservice architecture from Jaeger (2018)



Shortcomings of Existing Approaches

● Users have to think about their problem through the underlying system’s 
mechanisms

● Users are limited in what they can express because of the underlying 
system’s distribution details

● Systems have a hard time adapting end-to-end dynamically
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Could We Do Better?

● Users have to think about their problem through the underlying system’s 
mechanisms

○ Could we fulfill the promise of transparent distribution?

● Users are limited in what they can express because of the underlying 
system’s distribution details

○ Could we do so while exposing a truly general-purpose programming model?

● Systems have a hard time adapting end-to-end dynamically
○ Could we use this model to construct more flexible systems?
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Foundations
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Compute (      ) and data (     )

time
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delete()

time

init()
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Compute (      ) and data (     )



Objects: Organizing Memory

A typed region of semantically-related data items.

Unique, invariant identity in a global address space.

Object<T>

123:
Object are mobile.
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Objects: Organizing Memory
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Objects: Organizing Memory
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Nanotransactions: Organizing Computation

A constrained data access mechanism.

All accesses to objects happen only through nanotransactions.
● Unrestricted access to (shared) data makes it harder for the runtime to assist in distribution
● Transactional semantics ease the burden of consistency
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Nanotransactions: Organizing Computation

Nanotransactions are also mobile.

From the perspective of the nanotransaction, all data is local.

Local computation is much easier to express correctly.
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Objects + Nanotransactions: Organizing Distribution

Our ask: factor your program into composable 
operations over local data.

Our promise: the runtime will do the right thing*.

*  maintain the integrity of their data, while optimally orchestrating execution 22

Possible because of:
● the visibility into application semantics
● the freedom around protocol



Use cases, through the data lens
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Use case – Word Frequency

struct Document {
  lines : List<String>;
}

struct FrequencyAggregator {
  frequencies: Map<String, Counter>;
}

24



Use case – Word Frequency
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Use case – Word Frequency

server

. . .

server
Document

server
Document

Document

count(    ,    )

FrequencyAggregator

(2)

26



Use case – Word Frequency
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Use case – Distributed Graph Processing
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Use case – Distributed Graph Processing
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Local code, but actually distributed
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Use Case - Microservice Meshes

Teams now maintain models of their data, and a set of nanotransactions.

Any computation is free to happen anywhere in the cluster, since data is free 
to move to any machine.
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Takeaways

There is an opportunity to reconsider how we distribute.

● Objects
○ Invariant references
○ Global Address Space
○ Mobility

● Nanotransactions
○ Shippable, local computation
○ Transactional semantics

● Objects + nanotransactions
○ The runtime can peek into the application’s semantics
○ Can effectively orchestrate execution
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If we take a data-first approach…

… we can distribute computation in a hands-free way for users…

… while also enabling more flexible systems.

Just follow the data!
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