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Shortcomings of Existing Approaches

e Users have to think about their problem through the underlying system’s
mechanisms



Use Case - Distributed Graph Processing

~

Available
>

machines

Alice




Use Case - Distributed Graph Processing

KickStarter [233]* M-mem.
Mondal et al. [178] M-mem.* crU csmt
iGraph [126]
Sprouter [2]

(A/R) Uses ASPIRE [232]. *1t is a runtime technique.

Dt (A) D' (a) *Uses CouchDB as backend [15], T Unclear (relies on CouchDB)
®)(A/U) ®D(A/U) Extends Spark

= (A) Extends Spark

= M-mem. CPU C
M-mem., disk CPU C

Reference  Ds? Datalocation Arch. F? Con? ~ B? sB? T? acid?p? L? s2 D2 Dd8e Vertex Remarks
updates  updates
STINGER [79] X M-mem. CPU S % - X X B @ x X (A/R) ®* (A/R) *Removal is unclear
'UNICORN [222] M-mem. CPU C % - X X X = X X (A/R) (A/R)  Extends IBM InfoSphere Streams [45]
DISTINGER [85] M-mem. CPU S x X x X x % (A/R) (A/R)  Extends STINGER [79]
cuSTINGER [103] ¥ GPUmem. GPU*S % x x X x x (A/R) (A/R)  Extends STINGER [79]. *Single GPU.
EvoGraph [205] % M-mem. GPU*C % - X X B = x x (A/R) (A/R)  Supports multi-tenancy to share GPU resources. *Single GPU.
Hornet [49] % GPU M-mem.GPUTS  x* x x X% x x (A/R/U)®=m (A/R/U) * Not mentioned. TSingle GPU
GraPU [210], [211] M-mem., disk CPU (- X X X x X (A/R) %= *Batches are p d with non-strai; ward schemes
Grace [193] X M-mem. cPU - =@ x x ®®(A/R/U)S(A/R) Toimplement transactions
Kineograph [56] M-mem. CPU [C = = @ @(A/U*) @®(A/U*) *Custom update functions are possible
LLAMA[162] % M-mem.,, disk CPU x % x % (A/R) (A/R) —
Al H CellIQ [120] Disk (HDFS) CPU x x - x (A/R) (A/R)  Extends GraphX [101] and Spark [244]. *No details.
I C e GraphTau [121] M-mem., disk CPU - x x - x (A/R) (A/R)  Extends Spark. *Offers more than simple snapshots.
DeltaGraph [69] % M-mem. CPU C ®@®(s:0)* % x x - x X (A/R) (A/R)  *Relies on Haskell’s features to create snapshots
GraphIn [206] ~ %* M-mem. CPU C+SED(s) x x X X ®* (A/R) @D* (A/R) *Details are unclear. f Only mentioned
Aspen [71] %X M-mem., disk CPU S+C@® (s:C)* x X - x X (A/R) (A/R)  *Focus on ligh igh pst enables serializabilit
Tegra [122] M-mem., disk CPU x x = (A/R) (A/R)  Extends Spark. *Live updates are considered but outside core focus.
N -
Graphine 51) Memem, disk CPU XXX E X X EAR/UE AR/ e, bt o detas e provided.
ZipG [139] M-mem. CPU S+C@®(s) x x x x (A/R/U)®® (A/R/U) Extends Spark & Succinct [5]
GraphOne [148] %  M-mem. CPU S+C@® (s:T) x x - x X (A/R) (A/R)  Updates of weights are possible
LiveGraph [250] % M-mem., disk CPU S+CE®(s:C) X na @B - x x (A/R/U)®® (A/R/U)—
Concerto [152] M-mem. CPU S+Cm(f)* @ x & @ x x @ED(A/U) @D (A/U) ™A two-phase commit protocol based on fine-grained atomics
aimGraph [236] % GPUmem. GPU*S+«CED(f)f = x x x x (A/R) % *Single GPU. T Only fine reads/updates are considered.
faimGraph [237] X GPU, M-mem.GPU* $+C@®D (f) x x - x X (A/R) (A/R)  *Single GPU. Only fine reads/updates, using locks /atomics.
GraphBolt [166] % M-mem. CPU C+S@ED (f)* x x - x x (A/R) (A/R)  Uses Ligra [215]. *Fine edge updates are supported.
DZiG [165] X M-mem. x x = x X @®(A/R) ®®(A/R)
RisGraph [86] %X M-mem. x x - x X (A/R) @D(A/R) *Detailsin§5.1.
GPMA (Sha [207]) @>* GPU mem. x x (A/R) %= *Multiple GPUs within one server. T Details in §5.1.
-
-
(-

Practice of Streaming Processing of Dynamic Graphs: Concepts, Models, and Systems (IEEE TPDS)



Shortcomings of Existing Approaches

e Users have to think about their problem through the underlying system’s
mechanisms

e Users are limited in what they can express because of the underlying
system’s distribution details



Short-lived computations over structured data
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Use Case - Microservice Meshes

Uber’s microservice architecture from Jaeger (2018) 44



Shortcomings of Existing Approaches

e Users have to think about their problem through the underlying system’s

mechanisms

e Users are limited in what they can express because of the underlying
system’s distribution details

e Systems have a hard time adapting end-to-end dynamically
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Could We Do Better?

o  Could we fulfill the promise of transparent distribution?

o Could we do so while exposing a truly general-purpose programming model?

o Could we use this model to construct more flexible systems?
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Foundations
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Objects: Organizing Memory

A typed region of semantically-related data items.

Unique, invariant identity in a global address space.

Object are mobile.

123:

Object<T>
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Objects: Organizing Memory




Objects: Organizing Memory




Nanotransactions: Organizing Computation

A constrained data access mechanism. D

!

All accesses to objects happen only through nanotransactions.
e Unrestricted access to (shared) data makes it harder for the runtime to assist in distribution
e Transactional semantics ease the burden of consistency
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Nanotransactions: Organizing Computation

Nanotransactions are also mobile.
From the perspective of the nanotransaction, all data is local.

Local computation is much easier to express correctly.
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Objects + Nanotransactions: Organizing Distribution
L]

Our ask: factor your program into composable !
operations over local data. [ ; ]

Our promise: the runtime will do the right thing*.

Possible because of:
e the visibility into application semantics
e the freedom around protocol

* maintain the integrity of their data, while optimally orchestrating execution 22



Use cases, through the data lens
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Use case - Word Frequency

struct Document { let count = nando( |
lines : List<String>; body: &Document,
} output: &FrequencyAggregator,
[
struct FrequencyAggregator { for line in body.lines {
frequencies: Map<String, Counter>; for word in line.split(‘ ‘) {
} output[word] += 1;




Use case - Word Frequency
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Use case - Word Frequency
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Use case - Word Frequency
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Use case - Distributed Graph Processing

struct Node { let rec aggregate = nando( |
node: &Node, output: &Aggregator,

value: ub4;
| {

neighbors: List<Node>;

} if node in output.visited {
return;
struct Aggregator { }

sum: Counter;
visited: Set<Node>; output.visited. insert(node);
output.sum += node.value;

for neighbor in node.neighbors {
aggregate(neighbor, output);

F):




Use case - Distributed Graph Processing
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Local code, but actually distributed

let count = nando( |
body: &Document,
output: &FrequencyAggregator,
| {
for line in body.lines {
for word in line.split(‘ ‘) {
output[word] += 1;

let rec aggregate = nando( |
node: &Node, output: &Aggregator,
[

if node in output.visited {
return;

}

output.visited. insert(node);
output.sum += node.value;

for neighbor in node.neighbors {
aggregate(neighbor, output);

)




Use Case - Microservice Meshes

Teams now maintain models of their data, and a set of nanotransactions.

Any computation is free to happen anywhere in the cluster, since data is free
to move to any machine.
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Takeaways

There is an opportunity to reconsider how we distribute.

e Objects
o Invariant references
o Global Address Space
o  Mobility
e Nanotransactions
o Shippable, local computation
o Transactional semantics
e Objects + nanotransactions
o The runtime can peek into the application’s semantics
o Can effectively orchestrate execution
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If we take a data-first approach...
... we can distribute computation in a hands-free way for users...

... While also enabling more flexible systems.

Just follow the data!

Achilles Benetopoulos (abenetop@ucsc.edu, @singingcircuits)
twizzler.io
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