A data-first, hands-free, distributed
programming model

Achilles Benetopoulos (abenetop@ucsc.edu)

Motivation

Use Case - Word Frequency

Carol

wordcount

!

workstation / server

Use Case - Word Frequency

Carol

wordcount

x

server

Use Case - Word Frequency

framework-adapted wordcount

@

Distribution Framework (MR, Spark, etc.)

Carol @

server

Shortcomings of Existing Approaches

e Users have to think about their problem through the underlying system’s
mechanisms

Use Case - Distributed Graph Processing

~

Available
>

machines

Alice

Use Case - Distributed Graph Processing

KickStarter [233]* M-mem.
Mondal et al. [178] M-mem.* crU csmt
iGraph [126]
Sprouter [2]

(A/R) Uses ASPIRE [232]. *1t is a runtime technique.

Dt (A) D' (a) *Uses CouchDB as backend [15], T Unclear (relies on CouchDB)
®)(A/U) ®D(A/U) Extends Spark

= (A) Extends Spark

= M-mem. CPU C
M-mem., disk CPU C

Reference Ds? Datalocation Arch. F? Con? ~ B? sB? T? acid?p? L? s2 D2 Dd8e Vertex Remarks
updates updates
STINGER [79] X M-mem. CPU S % - X X B @ x X (A/R) ®* (A/R) *Removal is unclear
'UNICORN [222] M-mem. CPU C % - X X X = X X (A/R) (A/R) Extends IBM InfoSphere Streams [45]
DISTINGER [85] M-mem. CPU S x X x X x % (A/R) (A/R) Extends STINGER [79]
cuSTINGER [103] ¥ GPUmem. GPU*S % x x X x x (A/R) (A/R) Extends STINGER [79]. *Single GPU.
EvoGraph [205] % M-mem. GPU*C % - X X B = x x (A/R) (A/R) Supports multi-tenancy to share GPU resources. *Single GPU.
Hornet [49] % GPU M-mem.GPUTS x* x x X% x x (A/R/U)®=m (A/R/U) * Not mentioned. TSingle GPU
GraPU [210], [211] M-mem., disk CPU (- X X X x X (A/R) %= *Batches are p d with non-strai; ward schemes
Grace [193] X M-mem. cPU - =@ x x ®®(A/R/U)S(A/R) Toimplement transactions
Kineograph [56] M-mem. CPU [C = = @ @(A/U*) @®(A/U*) *Custom update functions are possible
LLAMA[162] % M-mem.,, disk CPU x % x % (A/R) (A/R) —
Al H CellIQ [120] Disk (HDFS) CPU x x - x (A/R) (A/R) Extends GraphX [101] and Spark [244]. *No details.
I C e GraphTau [121] M-mem., disk CPU - x x - x (A/R) (A/R) Extends Spark. *Offers more than simple snapshots.
DeltaGraph [69] % M-mem. CPU C ®@®(s:0)* % x x - x X (A/R) (A/R) *Relies on Haskell’s features to create snapshots
GraphIn [206] ~ %* M-mem. CPU C+SED(s) x x X X ®* (A/R) @D* (A/R) *Details are unclear. f Only mentioned
Aspen [71] %X M-mem., disk CPU S+C@® (s:C)* x X - x X (A/R) (A/R) *Focus on ligh igh pst enables serializabilit
Tegra [122] M-mem., disk CPU x x = (A/R) (A/R) Extends Spark. *Live updates are considered but outside core focus.
N -
Graphine 51) Memem, disk CPU XXX E X X EAR/UE AR/ e, bt o detas e provided.
ZipG [139] M-mem. CPU S+C@®(s) x x x x (A/R/U)®® (A/R/U) Extends Spark & Succinct [5]
GraphOne [148] % M-mem. CPU S+C@® (s:T) x x - x X (A/R) (A/R) Updates of weights are possible
LiveGraph [250] % M-mem., disk CPU S+CE®(s:C) X na @B - x x (A/R/U)®® (A/R/U)—
Concerto [152] M-mem. CPU S+Cm(f)* @ x & @ x x @ED(A/U) @D (A/U) ™A two-phase commit protocol based on fine-grained atomics
aimGraph [236] % GPUmem. GPU*S+«CED(f)f = x x x x (A/R) % *Single GPU. T Only fine reads/updates are considered.
faimGraph [237] X GPU, M-mem.GPU* $+C@®D (f) x x - x X (A/R) (A/R) *Single GPU. Only fine reads/updates, using locks /atomics.
GraphBolt [166] % M-mem. CPU C+S@ED (f)* x x - x x (A/R) (A/R) Uses Ligra [215]. *Fine edge updates are supported.
DZiG [165] X M-mem. x x = x X @®(A/R) ®®(A/R)
RisGraph [86] %X M-mem. x x - x X (A/R) @D(A/R) *Detailsin§5.1.
GPMA (Sha [207]) @>* GPU mem. x x (A/R) %= *Multiple GPUs within one server. T Details in §5.1.
-
-
(-

Practice of Streaming Processing of Dynamic Graphs: Concepts, Models, and Systems (IEEE TPDS)

Shortcomings of Existing Approaches

e Users have to think about their problem through the underlying system’s
mechanisms

e Users are limited in what they can express because of the underlying
system’s distribution details

Short-lived computations over structured data

10

Use Case - Microservice Meshes

Uber’s microservice architecture from Jaeger (2018) 44

Shortcomings of Existing Approaches

e Users have to think about their problem through the underlying system’s

mechanisms

e Users are limited in what they can express because of the underlying
system’s distribution details

e Systems have a hard time adapting end-to-end dynamically

12

Could We Do Better?

o Could we fulfill the promise of transparent distribution?

o Could we do so while exposing a truly general-purpose programming model?

o Could we use this model to construct more flexible systems?

13

Foundations

14

Compute (

) and data ([)

=

o

=

time

15

Compute (| |)and data ([))

init()

time

|

|

\4

delete()

16

Objects: Organizing Memory

A typed region of semantically-related data items.

Unique, invariant identity in a global address space.

Object are mobile.

123:

Object<T>

17

Objects: Organizing Memory

Objects: Organizing Memory

Nanotransactions: Organizing Computation

A constrained data access mechanism. D

!

All accesses to objects happen only through nanotransactions.
e Unrestricted access to (shared) data makes it harder for the runtime to assist in distribution
e Transactional semantics ease the burden of consistency

20

Nanotransactions: Organizing Computation

Nanotransactions are also mobile.
From the perspective of the nanotransaction, all data is local.

Local computation is much easier to express correctly.

21

Objects + Nanotransactions: Organizing Distribution
L]

Our ask: factor your program into composable !
operations over local data. [;]

Our promise: the runtime will do the right thing*.

Possible because of:
e the visibility into application semantics
e the freedom around protocol

* maintain the integrity of their data, while optimally orchestrating execution 22

Use cases, through the data lens

23

Use case - Word Frequency

struct Document { let count = nando(|
lines : List<String>; body: &Document,
} output: &FrequencyAggregator,
[
struct FrequencyAggregator { for line in body.lines {
frequencies: Map<String, Counter>; for word in line.split(‘ ‘) {
} output[word] += 1;

Use case - Word Frequency

——

D

(1) count()

Carol

-

Document

server

/

server

(&

server

[

25

Use case - Word Frequency

-

(2)

Document

count(

FrequencyAggregator

N

[

server

|

[

server

|

26

Use case - Word Frequency

—

3)
Result
Merging <

Carol

-

Document

server

/

server

(&

server

[

27

Use case - Distributed Graph Processing

struct Node { let rec aggregate = nando(|
node: &Node, output: &Aggregator,

value: ub4;
| {

neighbors: List<Node>;

} if node in output.visited {
return;
struct Aggregator { }

sum: Counter;
visited: Set<Node>; output.visited. insert(node);
output.sum += node.value;

for neighbor in node.neighbors {
aggregate(neighbor, output);

F):

Use case - Distributed Graph Processing

(1) aggregate()
[)

Alice

(2) aggregate()

Host B

/O

start_node

\(2) aggregate()

Host C

Host D

Local code, but actually distributed

let count = nando(|
body: &Document,
output: &FrequencyAggregator,
| {
for line in body.lines {
for word in line.split(‘ ‘) {
output[word] += 1;

let rec aggregate = nando(|
node: &Node, output: &Aggregator,
[

if node in output.visited {
return;

}

output.visited. insert(node);
output.sum += node.value;

for neighbor in node.neighbors {
aggregate(neighbor, output);

)

Use Case - Microservice Meshes

Teams now maintain models of their data, and a set of nanotransactions.

Any computation is free to happen anywhere in the cluster, since data is free
to move to any machine.

31

Takeaways

There is an opportunity to reconsider how we distribute.

e Objects
o Invariant references
o Global Address Space
o Mobility
e Nanotransactions
o Shippable, local computation
o Transactional semantics
e Objects + nanotransactions
o The runtime can peek into the application’s semantics
o Can effectively orchestrate execution

32

If we take a data-first approach...
... we can distribute computation in a hands-free way for users...

... While also enabling more flexible systems.

Just follow the data!

Achilles Benetopoulos (abenetop@ucsc.edu, @singingcircuits)
twizzler.io

33

mailto:abenetop@ucsc.edu

