
Anna Herlihy
HPTS

October 10 2022

1

✨A Database of Code✨
aka

Advanced Metaprogramming Queries

Machine-generated data drives growth

2Prediction: Code Volume & Complexity 🚀

0

50

100

150

200

2010 2015 2020 2025

D
at

a
Vo

lu
m

e
(in

 z
et

ab
yt

es
)

Year

Projected volume of data created and consumed
🚀
☁☁☁

Source:
Statistica

More People Are Writing More Code

3Complexity is outgrowing capacity

0

50

100

150

200

250

2008 2013 2018

of

 R
ep

os
 (m

illi
on

s)

Year

Unique Repositories
on GitHub

Source:
Github

Code complexity is growing

– GitHub Co-Pilot
– Stack Graphs
– Meta Aroma
– Facebook Getafix, Infer
– IBM Project CodeNet

G
itu

b
Po

pu
la

rit
y

R
an

k

2014 2015 2016 2017 2018 2019 2020 2021

JavaScript
Python

Java
TypeScript

C#
PHP

C++
Shell
C
Ruby

Source:
Github

Programmability Improves Complexity

4

JavaScript
Python

Java
TypeScript

C#
PHP

C++
Shell
C
Ruby

Source:
Github

JavaScript
Python

Java
TypeScript

C#
PHP

C++
Shell
C
Ruby

Trend towards higher level of abstraction

Abstraction Means Code Generation

5Machine-generated code drives exponential growth

– Advanced type systems

– Metaprogramming (Rust, Scala, etc.)

– Provably correct ! rule-based languages

– Low-Code, No-Code systems

A Challenge "

Database people understand large volumes of data

We need to start thinking about systems that store and
mine information from large volumes of code

6So what could that look like?

i
i

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Applications

i
i

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal Formally define the problem

Applications

The Road to CodeDB

How to extract meaning from code

• AI-based approaches: rigorous enough?
• Formal verification-based approaches: scalable enough?
• Static analysis "

8Static analysis can be explainable & efficient

Does X
undo Y?

What inherits

from X?

Is X in scope at point Y?

What type

is X?

Could X be
tainted?

Does X have

side effects? Where are the
callers of X?

Extract guarantees without running it

• A program is a function = 𝐹
– instructs a machine how to change state at each step

• Static analysis computes an abstract state = #𝑥
– over-approximates all possible concrete states

9
Need a common framework to express these problems

Not magic, math
• &𝐹 is an abstraction of the program function 𝐹

• Every sound approximation must satisfy &𝐹 #𝑥 ⊑ #𝑥

– Want the smallest #𝑥 that satisfies this property

– iteratively apply &𝐹 until a fixed point is reached

• This class of problems are called least fixed-point

10Abstract interpretation is a mathematical foundation

i
i

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal Formally define the problem

Applications

it T
i i O

É t

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Least
fixpoint

Formally define the problem

Applications

it T
i i O

É t

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Least
fixpoint

Formally define the problem

Applications

Find a framework to
solve the problem

The Road to CodeDB

11

Datalog Fixpoint problems
• Datalog has a fixed-point semantics:

– a Datalog program is a set of rules
– its solution is the minimal model

• Systems like Souffle use Datalog for static analysis

• Datalog rules are tedious to write and easy to automate

12We can build our query engine on Datalog!

🤝

13

it T
i i O

É t

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Least
fixpoint

Formally define the problem

Datalog

Applications

Find a framework to
solve the problem

The Road to CodeDB

JIT Data Virtualizing, over Code
• Virtualize [Karpathiotakis et al] over typed IR to extract Datalog facts

– Avoid ingesting data, JIT generation of operators

• TASTy = Typed Abstract Syntax Trees
– Includes source positions, types, etc. + TastyQuery

• Scala metaprogramming generates + stores TASTy
– Runtime inspection, operator specialization, incremental compilation, etc.
– Compile-time or runtime

14This is my main research focus "

Datalog Queries == Datalog Data
• Our data layer is essentially facts derived from TASTy

15Query language + execution engine + storage layer

val a = F
val b = a
val c = b
if(c) e

Data
code

TASTy

Assign(a, F)
Assign(b, a)
Assign(c, b)

Datalog
Facts

Query
code

deadCode?(e)
PointsTo(v1, v2)
isFalse(v)
Reachable(f1, f2)
deadCode(expr)

Datalog
Rules

• Predefine Datalog rules as out-of-the-box queries

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Implementation

Formally define the problem

Quotes+
Splices
TASTy

Datalog

Find a framework to
solve the problem

System interfaceApplications

Least
fixpoint

it T
i i O

É t

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Least
fixpoint

Implementation

Formally define the problem

Quotes+
Splices
TASTy

Datalog

Find a framework to
solve the problem

System interfaceApplications

Embedded
DSL

The Road to CodeDB

16

Composing Queries

• Constant propagation analysis: isTrue(s); isFalse(s)

• Reachability analysis: isReachable(s)

• Combination = a conditional constant propagation analysis

17Can compose queries to construct new static analyses

it T
i i O

É t

Queries
over code?

Novel
optimizations in
dbs, compilers,

and beyond

Blue-sky research goal

Least
fixpoint

Implementation

Formally define the problem

Quotes+
Splices
TASTy

Datalog

Find a framework to
solve the problem

System interfaceApplications

Embedded
DSL

The Road to CodeDB

18

Identifying Wasted Work

19CodeDB opens new optimization opportunities

Program
A

Program
B

[CIDR2022]

Arriving to CodeDB

WIP @ github.com/aherlihy/datalog
herlihyap@gmail.com

20Thank you!!

• We need systems that improve code performance & correctness

• We get there with powerful data management techniques

