A Database of Code

aka
Advanced Metaprogramming Queries

Anna Herlihy
HPTS
October 10 2022

J
VE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 1

Machine-generated data drives growth

Projected volume of data created and consumed ‘?

200

150

100

50

Data Volume (in zetabytes)

0

2010

Source:
Statistica

2015 2020

2025

Prediction: Code Volume & Complexity % z

\IAS LAMP

™ere

More People Are Writing More Code

Unique Repositories

950 on GitHub

N
o
o

of Repos (millions)
S o
o o

(&)
o

0

2008 2013 2018

Source:
Github Year

Code complexity is growing

GitHub Co-Pilot

Stack Graphs

Meta Aroma

Facebook Getafix, Infer

IBM Project CodeNet

Complexity is outgrowing capacity :

Programmability Improves Complexity

Python

B TypeScript Java

TypeScript

Gitub Popularity Rank

2014 2015 2016 2017 2018 2019 2020 2021

Source:
Github

Trend towards higher level of abstraction :

\IAS LAMP - P
Abstraction Means Code Generation

— Advanced type systems
— Metaprogramming (Rust, Scala, etc.)
— Provably correct - rule-based languages

— Low-Code, No-Code systems

Machine-generated code drives exponential growth .

A Challenge ©

Database people understand /arge volumes of data

We need to start thinking about systems that store and
mine information from large volumes of code

So what could that look like? :

\IAS LAMP PP

The Road to CodeDB

Blue-sky research goal Formally define the problem

Queries

over code?

~

- N
- Ay
. .

Novel
optimizations in
dbs, compilers,
and beyond

Where are the

callers of X?
Could X be
tainted?

« Al-based approaches: rigorous enough?
* Formal verification-based approaches: scalable enough?
« Static analysis ©

Static analysis can be explainable & efficient .

Extract guarantees without running it

« A program is a function
—instructs a machine how to change state at each step

« Static analysis computes an abstract state
—over-approximates all possible concrete states

Need a common framework to express these problems

AIAS LAMP =P
Not magic, math

IS an abstraction of the program function

« Every sound approximation must satisfy
—Want the smallest ¥ that satisfies this property

—iteratively apply F/ until a fixed point is reached

* This class of problems are called least fixed-point

Abstract interpretation is a mathematical foundatione

\IAS LAMP

The Road to CodeDB

Find a framework to

Blue-sky research goal Formally define the problem solve the problem

Queries Least
over code? fixpoint

o -
- N
. <
P .

Novel
optimizations in
dbs, compilers,
and beyond

™ere

11

AIAS LAMP =P
Datalog S~ Fixpoint problems

« Datalog has a fixed-point semantics:
—a Datalog program is a set of rules
—its solution is the minimal model

« Systems like Souffle use Datalog for static analysis

» Datalog rules are tedious to write and easy to automate

We can build our query engine on Datalog! -

\AS LAVIP EPE

The Road to CodeDB

Find a framework to
golve the problem

Blue-sky research goal Formally define the problem

Least
fixpoint

Queries

over code?

\

o -
- N
- <
. .

Datalog

Novel
optimizations in
dbs, compilers,
and beyond

13

JIT Data Virtualizing, over Code

* Virtualize karpatiotakis eta) OVEr typed IR to extract Datalog facts
— Avoid ingesting data, JIT generation of operators

« TASTy = Typed Abstract Syntax Trees

— Includes source positions, types, etc. + TastyQuery

« Scala metaprogramming generates + stores TASTy
— Runtime inspection, operator specialization, incremental compilation, etc.
— Compile-time or runtime

This is my main research focus © i

\IAS LAMP - Pi-
Datalog Queries == Datalog Data

« QOur data layer is essentially facts derived from TASTy

* Predefine Datalog rules as out-of-the-box queries

Term.Block {

val a = F =L (a, F) PointsTo(vy, V,)

valb=a wp . ==p (b, a)=f= isFalse(v) (e)
val ¢ = b P (c, b) Reachable(fi, f,)

if(c) e deadCode(expr)

Data TASTy Datalog Datalog Query
code Facts Rules code

Query language + execution engine + storage layer-

The Road to CodeDB

Find a framework to
golve the problem

Blue-sky research goal Formally define the problem

Least

fixpoint
T
TN
+ - O
N~
1

Queries

over code?

o -
- N
. <
. .

Datalog

Novel
Embedded Quotes+

DSL

optimizations in
dbs, compilers,
and beyond

Splices
TASTy

System interface

16

\IAS LAMP =P
Composing Queries

« Constant propagation analysis: isTrue(s); isFalse(s)
* Reachability analysis: isReachable(s)

 Combination = a conditional constant propagation analysis

Can compose queries to construct new static analyses

NI AS LAMP gL

The Road to CodeDB

Find a framework to

Blue-sky research goal Formally define the problem solve the problem

Queries Least
over code? fixpoint

=]

. - T
- /: N~
I3 N + - o
\l/
1

Novel Quotes+
Embedded ‘0

DSL

optimizationg in
dbs, compilers,
and beyond

Splices
TASTy

System interface

18

'
v
i

\IAS LAMP

Identifying Wasted Work
ead bmw"g

[CIDR2022]

CodeDB opens new optimization opportunities -

AIAS LAMP = Pr

Arriving to CodeDB

* We need systems that improve code performance & correctness

* We get there with powerful data management techniques

WIP @ github.com/aherlihy/datalog
herlihyap@gmail.com

Thank you!! &

