
The Design of Apiary:
A Programming Environment

 for DBOS
Peter Kraft and Qian Li

Question: How should developers
program in DBOS?

26

Answer: DBOS should provide a
function-as-a-service (FaaS)

programming model!

27

What is FaaS?

In the function-as-a-service (FaaS) model, users submit functions to a
remote runtime which manages and executes them.

28

Why FaaS?

● FaaS abstracts away the need to manage your own servers and
infrastructure—transparent failure recovery and auto-scaling!

● Reduces cost because you only pay for what compute you use.
● Our prototype targets applications–web services and microservices.

29

● Existing FaaS platforms separate
application logic (executed in
cloud functions) and data
management (done in interactive
transactions).

● This is the opposite of DBOS.

30

Existing FaaS Platforms Don’t Follow DBOS Ideas

Issue #1: High Overhead on DB Operations

An OpenWhisk function performing a point update in an in-memory DB.
Query execution accounts for only 2% of the overall execution time.

31

32

● Functions aren’t transactional, developers instead must manage
interactive transactions in a remote database.

● No cross-function transactional guarantees.

● Functions are naively re-executed on failure, potentially replaying
completed transactions and leading to unexpected errors.

○ Example: You may pay for a reservation twice 😭

Issue #2: Weak Guarantees for Data Management

● Apiary tightly integrates function execution and data management:
it wraps a distributed DBMS and executes functions transactionally
as stored procedures.

33

💡 A classic idea from
database systems!

Apiary: A DBOS-Inspired FaaS Platform

a) Existing FaaS Platforms b) Apiary

Apiary Provides a Familiar Programming Interface

35

Apiary Functions are Composed into Larger Programs

● Scheduling layer: Executes programs, provides end-to-end
guarantees (multi-function txns, exactly-once semantics).

● Tracing layer: Provides observability through data provenance
tracking.

36

Apiary Builds Service Layers on top of the DBMS

We’ll Discuss Three New Apiary Features

● Transactional guarantees.

● Exactly-once function execution semantics.

● Automatic provenance capture for observability.

37

Scheduling Layer

Tracing Layer

Apiary Functions are Database Transactions

● Apiary functions run transactionally as database stored procedures.

● Workflows are not transactional: transactions from separate
workflows may interleave.

38

Apiary Provides Multi-Function Transactions

● Apiary functions run transactionally as database stored procedures.

● Workflows are not transactional: transactions from separate
workflows may interleave.

● We provide multi-function transactions:

○ Example: first check room availability then reserve it.

○ We compile multiple functions into a single stored procedure.

39

Apiary Executes Functions Exactly Once

● To guarantee reliable workflow executions, we need exactly-once
function execution semantics.

● Example: We must guarantee that:

40

1) A room is only reserved once 2) Once reserved, a confirmation
email is sent only once.

Apiary Guarantees Exactly-Once Using Transactions

● Our solution: transactionally record function outputs in the DBMS
before a function returns.

● During failure recovery, check for the record in the database to
avoid violation of exactly-once semantics.

41

Apiary Guarantees Exactly-Once Using Transactions

● Our solution: transactionally record function outputs in the DBMS
before a function returns.

● During failure recovery, check for the record in the database to
avoid violation of exactly-once semantics.

● Some functions can safely re-execute and need not be recorded.
E.g., a read-only workflow.

● Through selective instrumentation, reduce runtime overhead
from 2.2x to 5%

42

Apiary Enhances Observability Through Data Provenance

● Automatically instrument DB and functions to capture data
provenance and full history of function executions.

● All logged information spooled to an analytical database like Amazon
Redshift or Vertica, queried with SQL.

43

Captured Data Provenance Information

● Execution history: what operation executed and when.

FunctionInvocations(timestamp, tx_id, function_name, ...)

● Data access history: what records did each transaction read from
and write to the database?

TableEvents(timestamp, tx_id, event_type, [record_data…])

44

Example Data Provenance Query

● Downstream Provenance: Find all changes made by a request that
earlier read sensitive information.

45

SELECT DISTINCT(record_id)

FROM TableEvents AS T,

 FunctionInvocations AS F

 ON T.func_id = F.func_id

WHERE T.event_type IN ('insert', 'update')

 AND F.function_name IN SUCCESSOR_FUNC_NAMES

 AND F.execution_id IN EXECUTION_IDS;

Extending Apiary Observability

● Building a transaction-oriented debugger.

● Everything is a transaction, enabling exciting debugging features:

○ Always-on tracing

○ Declarative debugging

○ Faithful replay

○ Retroactive programming

46

Faithful Replay and Retroactive Programming

● Insight: if functions are deterministic, and access shared state only

transactionally, we can faithfully replay any past execution by:

○ Re-executing its code normally but...

○ Restoring the database before each transaction.

● Developers can modify their code and test it on past events.

● Eliminate most Heisenbugs :)

47

Evaluation
● A cluster of ~100 VMs on GCP. Microservice workloads.
● Outperform OpenWhisk (a popular production FaaS system) by 7--68x:

due to a combination of scheduling, container init, and communication.

Throughput (queries/sec)
48

Evaluation
● Compare with Cloudburst (VLDB’21) and Boki (SOSP'21), research

systems for stateful FaaS.
● Improve performance by 2-27x using stored procedures to minimize

communication overhead.
● Apiary also provides stronger guarantees and observability.

49

https://github.com/DBOS-project/apiary

https://github.com/DBOS-project/apiary

