
DBOS Project
A Team of 20 people from MIT, Stanford, UW-Madison,

Lincoln Labs, Google, VMWare, BCG, and Sigma Computing

The Context

● Current system software dates from the 1980’s

○ Unix/Linux

● TCP/IP is just as elderly

The Context

● In the last 40-ish years, the OS state to be managed
○ processors, memory, storage
○ Tasks, messages, files
○ Etc.

● Has gotten massively larger (think 106 bigger)

● This makes managing OS state a DBMS problem!

The Context

● And new RM implementations have gotten a lot faster
● Main memory
● Different concurrency control
● Latch-free
● Deterministic execution
● compilation

Time to Rethink OSs from the Bare Metal on Up

● Level 4: user programs

● Level 3: OS support routines (mostly written in SQL)

● Level 2: a high performance, OLTP, multi-node, multi-core
distributed DBMS
○ VoltDB for now

● Level 1: microkernel (interrupt handlers, raw device support, basic
byte movement)

VoltDB

● Main memory DBMS
● Partitioned over many nodes
● SQL
● Transactional (ACID)
● High availability (replicas, failover)
● Very fast!

○ Millions of TPS on a modest cluster

● One example of a single-threaded, run-to-completion, main
memory, deterministic, implementation

Summary of Our Point of View

● Old mantra
○ Everything is a file

● New mantra
○ Everything is a table (we don’t see any advantage to a more complex

data model)

● All OS state in the DBMS in tables!!!!!

Basic Issue

● Analytics are much better/easier
● Monitoring is much better/easier
● Multi-node OS – no need for a separate cluster manager
● Transactions for all OS state

● But can this be fast enough????
○ Is a main memory distributed DBMS (VoltDB) fast enough?

YES!!!

DBOS Results – Phase 1

● We implemented
○ A file system
○ IPC
○ Multiple schedulers

● On top of VoltDB

● Running on MIT Supercloud and on GCP

Message System

● A message table
○ Message (sender, receiver, payload)

● Partitioned on receiver

● Sending a message: SQL insert
● Reading a message: SQL query followed by a delete

DBOS Results (VLDB ‘22)

● Scheduling
○ Is competitive

● File system
○ Is competitive with Linux FS and with Lustre

● IPC
○ Is competitive with gRPC
○ Loses to TCP/IP (but …)

A comment on VoltDB

● Unbeatable on single partition xacts
● Run-to-completion as a stored procedure – single threaded
● Command logging/asynchronous checkpoints for power failure
● Active-active replication for HA

● But lays an egg on multi-partition xacts
● Basically locks a whole partition

● DBOS is slightly inconvenienced by making everything
single-partitioned
● Xinjing Zhou (Lotus -- VLDB ‘22) fixed the problem

The Fix
○ Idea #1: Phase-Switching

■ MP phase: group execution and group distributed commit.
■ SP phase: run-to-completion

○ Idea #1 For MP, divide partitions into granules,
○ Lock the granules
○ NO_WAIT for deadlock prevention

● Lotus beats all comers (e.g. Aria (VLDB’20) and Calvin (SIGMOD’12))
○ Better SP performance – the same or better MP performance

This Encouraged Us to Move to Phase 2

● Provenance support

● Java serverless environment on top of what we have (runs now –
subject of next talk)

● We have the microkernel left (where do we go from here – subject
of Kostis talk)

Provenance

● Keep a record of everything that has happened to a

○ DBMS record

○ File (which is collection of DBMS records)

○ Message (again a DBMS record)

● This is DBMS log processing

○ Well understood

And

● Applications can store “interesting state” in VoltDB tables

● Automatic provenance for such state

● App level monitoring – with very little effort

Implementation

● Spool the log into a column-oriented data warehouse DBMS

○ Vertica for now

● Run any SQL query on Vertica that suits your fancy!

Example Queries

● Rank suspicious objects

○ Ranks tables based on average daily visits to check for

anomalies in data access patterns

● User connectivity

○ In the case of a compromised user, find all occurrences of

other users interacting with the compromised user

Results

● Ingest faster (and easier) than Splunk

● Queries wildly easier to write and faster

Outreach

● Working with Mars Candy and John Deere on security/monitoring

○ Discover attacks quickly (SQL or ML model)

○ Restore DBOS state from provenance (seconds)

● Working with Visa on cross company support for PII

Implications

● Render Linux/Kubernetes obsolete

● Design paradigm inspired by DBOS

○ All state in the DBMS (including application state)

○ Running on the cloud

○ In a serverless environment

○ With complete provenance

○ And much better security than now

DBOS Conclusion

● We believe the next generation OS should be DBMS-oriented.
● DBOS design principles:

○ Distributed, cloud native
○ All state in the DBMS (including application state)
○ With complete provenance
○ And much better security than now

Looking forward to your feedback!

https://dbos-project.github.io

https://dbos-project.github.io

