N2

S AATAS) ﬁ

Formal Methods Solve Only Half
My Problems

(and | have a lot of problems)

Marc Brooker % E




DOI:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services

Uses Formal
Methods

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-

dWs



Hubris
Humility
Laziness

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Kani Rust Verifier Blog About

Using the Kani Rust Verifier on a Firecracker
Example

Jul 13, 2022

In this post we'll apply the Kani Rust Verifier (or Kani for short), our open-source formal verification
tool that can prove properties about Rust code, to an example from Firecracker, an open source
virtualization project for serverless applications. We will use Kani to get a strong guarantee that
Firecracker's block device is correct with respect to a simple virtio property when parsing guest
requests, which may be invalid or malicious. In this way, we show how Kani can complement
Firecracker's defense in depth investments, such as fuzzing.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Using Lightweight Formal Methods to Validate a
Key-Value Storage Node in Amazon S3

James Bornholt Rajeev Joshi Vytautas Astrauskas

Amazon Web Services Amazon Web Services ETH Zurich
& The University of Texas at Austin

Brendan Cully Bernhard Kragl Seth Markle

Amazon Web Services Amazon Web Services Amazon Web Services
Kyle Sauri Drew Schleit Grant Slatton

Amazon Web Services Amazon Web Services Amazon Web Services

Serdar Tasiran Jacob Van Geffen Andrew Warfield
Amazon Web Services University of Washington Amazon Web Services

Abstract Using Lightweight Formal Methods to Validate a Key-Value Storage

Node in Amazon S3. In ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP ’21), October 26—28, 2021, Virtual Event,
Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3477132.3483540

This paper reports our experience applying lightweight for-
mal methods to validate the correctness of ShardStore, a new
key-value storage node implementation for the Amazon S3
cloud object storage service. By “lightweight formal methods”

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Semantic-based Automated Reasoning for
AWS Access Policies using SMT

John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Luckow, Neha Rungta, Oksana Tkachuk, Carsten Varming
Amazon Web Services

Abstract—Cloud computing provides on-demand access to IT
resources via the Internet. Permissions for these resources are
defined by expressive access control policies. This paper presents
a formalization of the Amazon Web Services (AWS) policy
language and a corresponding analysis tool, called ZELKOVA,
for verifying policy properties. ZELKOVA encodes the semantics
of policies into SMT, compares behaviors, and verifies properties.
It provides users a sound mechanism to detect misconfigurations
of their policies. ZELKOVA solves a PSPACE-complete problem
and is invoked many millions of times daily.

T TarmnANTTATTANT

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

In this paper, we present the development and application of
ZELKOVA, a policy analysis tool designed to reason about the
semantics of AWS access control policies. ZELKOVA translates
policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to check the validity
of the properties. We use off-the-shelf solvers and an in-house
extension of Z3 called Z3 AUTOMATA.

ZELKOVA reasons about all possible permissions allowed by
a policy in order to verify properties. For example, ZELKOVA

can ancwer the anectinne “Te thic recnnrce acceccihle hv a

dWs



e vt o it i — R e L 2}

S ot it il . N O+ g
s Ot =

S inalim AT . | W benday VYLD aae i e e ¢ Aoy
St i by w0 11 b 5 O
- N by Sl > S e |

Lefnds o Dhay




Safety
Liveness

kg

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Safety
Liveness

<>

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Distributed systems are complex dynamical
systems.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Distributed systems are complex dynamical
systems.

We don’t understand their dynamics!

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



SLoTs

WORKERS

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



SLoTs

WORKERS

dWs



SLoTs

o/
TASK <
STREAM
] |
elSA

WORKERS

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



SLoTs

WOR kERS

dWs



SLoTs

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



7,
s

dWs

© 2020, Amazon Web Servit







dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



“Reasoning purely analytically about
the behavior of complex stochastic
systems is generally infeasible.”

Agha and Palmskog, A Survey of Statistical Model Checking, TOMACS, Januar y 2018

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Question #1:

How do we understand
system dynamics better?

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Simulation!}T{checselyou!

dWs

\-/‘7

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



/|

SHARD

SHARD

G-2

A-p

dWs



Regular Small-world

Increasing randomness

Watts and Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, 1998

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



750 -

500 -

Transactions per second

250 -

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

10

Number of shards

20

30

name

beta 0.0
beta 0.1
beta 0.2
beta 0.3
beta 0.4
beta 0.5
beta 0.6
beta 0.7
beta 0.8
beta 0.9

dWs

\/‘7



~5,000 lines of Rust

but...

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



We already have a specification!

We already have a tool that searches
the specification’s state space!

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Question #2:

Can we get more value
from specifications?

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Distributed systems are complex dynamical
systems.

We don’t understand their dynamics.

This is a problem.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Distributed systems are complex dynamical
systems.

We don’t understand their dynamics.

This is a problem.

We’re not going to grow up till we solve it.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved



Answers?

Marc Brooker

mbrooker@amazon.com

marcbrooker@gmail.com

@marcjbrooker

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



mailto:mbrooker@amazon.com
mailto:marcbrooker@gmail.com

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Millions of Tiny Databases

Marc Brooker Tao Chen Fan Ping
Amazon Web Services Amazon Web Services Amazon Web Services

Abstract

Starting in 2013, we set out to build a new database to act as
the ion store for a high-p cloud block
storage system (Amazon EBS).This database needs to be not
only highly available, durable, and scalable but also strongly
consistent. We quickly realized that the constraints on avail-
ability imposed by the CAP theorem, and the realities of
operating distributed systems, meant that we didn’t want one
database. We wanted millions. Physalia is a transactional key-
value store, optimized for use in large-scale cloud control
planes, which takes of ge of i
patterns and infrastructure design to offer both high availabil-
ity and strong consistency to millions of clients. Physalia uses
its knowledge of datacenter topology to place data where it is
most likely to be available. Instead of being highly available
for all keys to all clients, Physalia focuses on being extremely
available for only the keys it knows each client needs, from
the perspective of that client.

This paper describes Physalia in context of Amazon EBS,
and some other uses within Amazon Web Services. We be-
lieve that the same patterns, and approach to design, are widely
applicable to distributed systems problems like control planes,
configuration management, and service discovery.

1 Introduction

Traditional architectures for highly-available systems assume
that i failures are statisti i and
that it is extremely unlikely for a large number of servers to
fail at the same time. Most modern system designs are aware
of broad failure domains (data centers or availability zones),
but still assume two modes of failure: a complete failure of a
datacenter, or a random uncorrelated failure of a server, disk
or other i These are for
most kinds of systems. Schroder and Gibson found [51] that
(in traditi i while the ili

of a second disk failure in a week was up to 9x higher when
a first failure had already occurred, this ion drops off

to less than 1.5x as systems age. While a 9x higher failure
rate within the following week indicates some correlation, it
is still very rare for two disks to fail at the same time. This
is just as well, because systems like RAID [43] and primary-
backup failover perform well when failures are independent,
but poorly when failures occur in bursts.

‘When we started building AWS in 2006, we measured the
availability of systems as a simple percentage of the time
that the system is available (such as 99.95%), and set Service
Level Agreements (SLAs) and internal goals around this per-
centage. In 2008, we introduced AWS EC2 Availability Zones:
named units of capacity with clear expectations and SLAs
around failure, ing to the
that customers were already familiar with. Over the decade
since, our thinking on failure and availability has continued
to evolve, and we paid increasing attention to blast radius and
correlation of failure. Not only do we work to make outages
rare and short, we work to reduce the number of resources
and customers that they affect [55], an approach we call blast
radius reduction. This philosophy is reflected in everything
from the size of our datacenters [30], to the design of our
services, to operational practices.

Amazon Elastic Block Storage (EBS) is a block storage
service for use with AWS EC2, allowing customers to create
block devices on demand and attach them to their AWS EC2
instances. volumes are designed for an annual failure rate
(AFR) of between 0.1% and 0.2%, where failure refers to a
complete or partial loss of the volume. This is significantly
lower than the AFR of typical disk drives [44]. EBS achieves
this higher ility through ication, i i
chain replication scheme (similar to the one described by van
Renesse, et al [54]). Figure 1 shows an abstracted, simplified,
architecture of EBS in context of AWS EC2. In normal opera-
tion (of this simplified model), replicated data flows through
the chain from client, to primary, to replica, with no need for
coordination. When failures occur, such as the failure of the
primary server, this scheme requires the services of a config-
wuration master, which ensures that updates to the order and

ip of the ication group occur i are

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 463

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 463

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 463

dWs




dWs

\/‘7

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



dWs

\/‘7

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Question #3:

Can we mechanize
exploration of the tradeoff

space? 3%

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



