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How to Kill two birds with one stone: ..

Leveraging Al investments to accelerate database systems
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Al is growing (especially NN)

ML+Al arXiv papers per month Exponential Growth of Neural Networks
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Big spent on

VCs are pouring $2B/quarter

Market expected to exceed
$200B/year by 2025.

. ((@erebras




Runtime

Very large/active communities

Tensor as de-facto API

PyTorch for AMD ROCm™
Platform now available

Introducing Accelerated
PyTorch Training on Mac

SambaNova



How can Databases A

take advantage of
this? f
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Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

cons

|s this even possible?

What about performance?
How expensive is it going to be? (engineering wise)

2



MAX (p_supplycost)
AS price,
s_name AS supp

ps_suppkey=s_suppkey
GROUP BY

supplier.s_name
ORDER BY

price DESC;

Parsing Layer
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MAX (p_supplycost)
AS price,
s_name AS supp

ps_suppkey=s_suppkey
GROUP BY

supplier.s_name
ORDER BY

price DESC;

Parsing Layer

IR Graph

APACHE

Spark

Physical Sort
Operator

Physical Plan



MAX (p_supplycost)
AS price,
s_name AS supp

ps_suppkey=s_suppkey
GROUP BY

supplier.s_name
ORDER BY

price DESC;

Parsing Layer

IR Graph

<—— Physical Sort

Planning Layer

Operator
Plan

APACHE

Operator Physical Plan

Tensor program for Sort

Tensor program for Join
Tensor program for Filter



MAX (p_supplycost)

s_name AS supp

IR Graph

ps_suppkey=s_suppkey
GROUP BY
supplier.s_name | r
 oupl Planning Laye
price DESC;

Operator :E
Plan L

Tensor Runtime

# %Ntvm

Parsing Layer

AS price, “— Physical Sort

Operator

Mobile

APACHE

SparkK

Browser
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Physical Plan

Tensor program for Sort

Tensor program for Join
Tensor program for Filter



Tensor Program for Filter

Opt 1: B

mask = torch.lt(l_quantity, 24)
output = torch.masked_select (1_quantity, mask)

mask = torch.lt (l_quantity, 24)

Opt 2:

idx = torch.nonzero (mask)
output = torch.index_select (1_quantity, dim=0, mask)

Numeric as Dates as Strings as UTF-8
N x 1 tensors N x T numeric N x max_length
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Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

cons

|s this even possible?

What about performance? (as compared with state-of-the-art)
How expensive is it going to be? (engineering wise)
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Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?

cons

What about performance?
How expensive is it going to be? (engineering wise)
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Speedup (base/TQP)

80

70

60

vs State of the Art
72X
11X 6X 8x
Spark DuckDB  BlazingSQL* OmniSci*

TPC-H Scale Factor 10GB, running on: 6 vCores, 112 GBRAM, P100 GPU
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Portability (different HW)

AR (

Mobile Browser
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TPC-H Scale Factor 1GB, running on: 6 vCores, 112 GBRAM (P100 relative speedup)
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Comparison (vs DuckDB)
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Performance on queries

TQP supports mixing SQL and
predictions of models built
using PyTorch, scikit-learn
and HuggingFace libraries.

I

Spark (1

(

DuckDB (1) -
TQP CPU (
(

(

Spark (6
DuckDB (6

2 ) 10 20 30
Median end-to-end query time (s)
Query time (in seconds) on a query mixing tree ensemble, one-hot encoding,
feature scaling & concatenation with relational join, aggregation and filtering.
In parentheses are the numbers of cores for CPU-based system:s.
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Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?

cons

What about performance?
How expensive is it going to be? (engineering wise)
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Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?

What about performance?
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Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?
What about performance?

How expensive is it going to be? (engineering wise)

Less than for TQP+ HB
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Future Directions:

Broader implications of having a DBMS co-existing with an ML runtime

1. Multi-modal data support

Current Mailbox v £ KFC Receipt

File Home Send/Receive View Help Acrobat Search

9 From ,‘:ﬂ Sent To v [%] Subject [L]J Has Attachments 9 Unread DE Categorized v Fh Flagged | |

SELECT
input AS images
image text similarity model("KFC Receipt", input) AS score
FROM attachments
ORDER BY score DESC
LIMIT 1
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Future Directions:

Broader implications of having a DBMS co-existing with an ML runtime

. Example Query Outputs
1. Multi-modal data support
Size Count

2. Automatic Differentiation small |1

Large
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Large
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J :, 8 Small
E . Dlglt, Size, ( ) Large

Small

7 / :5 parseImageToTable(Image) Large

C Digit, Size Large

Small
g 2 & Large
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- -~ 0 Trainable Table Lorge

Small

Value Function Large

Small
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{()* Compile SQL to Tensor Programs

Free-ride on SB of dollars of HW/SW investments

Performance looks great
Low engineering costs

Fun future directions
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Thanks!
https://aka.ms/gsl

Video credits: http://storyblocks.com
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