=& Microsoft @

e, S

£
*

raF

—

How to Kill two birds with one stone: ..

Leveraging Al investments to accelerate database systems

#

/ o/

€ I\/Iicrosbft_ Azure Data
b Gray Systems Lab 3

Matteo
Interlandi

Query Processing on Tensor Computation Runtimes

Dong Hel, Supun Nakandala?, Dalitso Banda?, Rathijit Sen?, Karla Saur?, Kwanghyun Park3,

Carlo Curino®, Jestis Camacho-Rodriguez®, Konstantinos Karanasos®, Matteo Interlandi?
'University of Washington, 2University of California, San Diego, *Microsoft
!donghe@cs.washington.edu, snakanda@eng.ucsd.edu, 3<firstname>.<lastname>@microsoft.com

Tensors: An abstraction for general data processing

Dimitrios Koutsoukos!, Supun Nakandala?, Konstantinos Karanasos®, Karla Saur?,
Gustavo Alonsol, Matteo Interlandi®

Share the Tensor Tea: How Databases can Leverage the
Machine Learning Ecosystem
Yuki Asada*?, Victor Fu*2, Apurva Gandhi*!, Advitya Gemawat*!, Lihao Zhang*?, Dong He*,

Vivek Gupta®, Ehi Nosakhare!, Dalitso Banda', Rathijit Sen', Matteo Interlandi’
L23Microsoft, *University of Washington

A Tensor Compiler for Unified Machine Learning Prediction Serving

Supun Nakandala®", Karla Saur™, Gyeong-In Yu®* Konstantinos Karanasos™,
Carlo Curino™, Markus Weimer™, Matteo Interlandi™

MMicrosoft, ‘UC San Diego, SSeoul National University

{<name>.<surname>}@microsoft.com, snakanda@eng.ucsd.edu, gyeongin@snu.ac.kr

WINDTUNNEL: Towards Differentiable ML Pipelines Beyond a
Single Model

Gyeong-In Yu*
Seoul National University
gyeongin@snu.ac.kr

Ce Zhang
ETH Zurich
ce.zhang@inf.ethz.ch

Saeed Amizadeh
Microsoft
saamizad@microsoft.com

Byung-Gon Chun
Seoul National University
FriendliAl
bgchun@snu.ac.kr

Sehoon Kim
UC Berkeley
sehoonkim@berkeley.edu

Markus Weimer
Microsoft
mweimer@microsoft.com

Artidoro Pagnoni*
Carnegie Mellon University
apagnoni@andrew.cmu.edu

Matteo Interlandi
Microsoft
mainterl@microsoft.com

2

Al is growing (especially NN)

ML+Al arXiv papers per month Exponential Growth of Neural Networks

100,000
log-scale

Total training compute, PFLOP-days

.C
ras)
c
o
£
S
(]
Qo
wnv
S
()]
Q
(¢0)
Q.
(T
o
=

2007 100 1,000 100,000

pUincation year Model memory requirement,

Big spent on

VCs are pouring $2B/quarter

Market expected to exceed
$200B/year by 2025.

. ((@erebras

Runtime

Very large/active communities

Tensor as de-facto API

PyTorch for AMD ROCm™
Platform now available

Introducing Accelerated
PyTorch Training on Mac

SambaNova

How can Databases A

take advantage of
this? f

N

Core ldea:

Neural
Networks

!

Tensor Computation Runtimes

& %Ntvm B

Mobile Browser

Core ldea:

. SQL

the popular

abstraction!

Neural Relational
Networks (sQL)

ool

Tensor Computation Runtimes

® %tvm

Mobile

Browser

2

Core ldea:

fﬁ

Neural Relational Classical
Networks (sQL) ML
Sl Tensor Computation Runtimes
"O: SQL .the popular & %ty
= abstraction! By -

Mobile Browser

n

Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

cons

|s this even possible?

What about performance?
How expensive is it going to be? (engineering wise)

2

MAX (p_supplycost)
AS price,
s_name AS supp

ps_suppkey=s_suppkey
GROUP BY

supplier.s_name
ORDER BY

price DESC;

Parsing Layer

2

MAX (p_supplycost)
AS price,
s_name AS supp

ps_suppkey=s_suppkey
GROUP BY

supplier.s_name
ORDER BY

price DESC;

Parsing Layer

IR Graph

APACHE

Spark

Physical Sort
Operator

Physical Plan

MAX (p_supplycost)
AS price,
s_name AS supp

ps_suppkey=s_suppkey
GROUP BY

supplier.s_name
ORDER BY

price DESC;

Parsing Layer

IR Graph

<—— Physical Sort

Planning Layer

Operator
Plan

APACHE

Operator Physical Plan

Tensor program for Sort

Tensor program for Join
Tensor program for Filter

MAX (p_supplycost)

s_name AS supp

IR Graph

ps_suppkey=s_suppkey
GROUP BY
supplier.s_name | r
 oupl Planning Laye
price DESC;

Operator :E
Plan L

Tensor Runtime

%Ntvm

Parsing Layer

AS price, “— Physical Sort

Operator

Mobile

APACHE

SparkK

Browser

'S

Physical Plan

Tensor program for Sort

Tensor program for Join
Tensor program for Filter

Tensor Program for Filter

Opt 1: B

mask = torch.lt(l_quantity, 24)
output = torch.masked_select (1_quantity, mask)

mask = torch.lt (l_quantity, 24)

Opt 2:

idx = torch.nonzero (mask)
output = torch.index_select (1_quantity, dim=0, mask)

Numeric as Dates as Strings as UTF-8
N x 1 tensors N x T numeric N x max_length

A
Sales
saleid rodid date region

1
2
3
4
5
6
7 ¢
8
9

s
o

2

n

Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

cons

|s this even possible?

What about performance? (as compared with state-of-the-art)
How expensive is it going to be? (engineering wise)

2

n

Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?

cons

What about performance?
How expensive is it going to be? (engineering wise)

2

Speedup (base/TQP)

80

70

60

vs State of the Art
72X
11X 6X 8x
Spark DuckDB BlazingSQL* OmniSci*

TPC-H Scale Factor 10GB, running on: 6 vCores, 112 GBRAM, P100 GPU

2

Portability (different HW)

AR (

Mobile Browser

Q

o 18
o
= 16
C 14
o)
a 1.2
@]
= [—— . [/ A AV e o
Vs
> 08
o
2 06
9 04 —
()]
o 02 —
(V)]
0

T4 M100 P100 V100 A100

TPC-H Scale Factor 1GB, running on: 6 vCores, 112 GBRAM (P100 relative speedup)

2

Comparison (vs DuckDB)

—_
N
[e0)
J
O
—_

W o
N A
1 L

over DuckDB

V100 _
i I al I iiz

boOa® ABgOa® AMagda® <M O <O b <M
"? Q\Q "? Q\Q "?\QQ\Q 'i? '\? Q\Q "? ? (?\QQ\Q "?

Device Device Device Device Device Device Device Device Device Device

TQP's query time speedup

o -
S I I N
L | | | | |

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q22

Y

W DN

N A~ 00
1 L J

over DuckDB
>

TQP's query time speedup

A Q.0 A aQ,0 ‘ Q, 0 b‘(B k. aQ,0 k. aQ,0
"?\0\\\0 "?\QQ\Q A \QQ\Q "? x| < "?\QQ\Q (?\0“\0

Device Device Device Device Device Device Device Device Device Device

TPC-H Scale Factor 10GB, running on: 8 vCores, 32 GBRAM (speed up vs DuckDB)

Performance on queries

TQP supports mixing SQL and
predictions of models built
using PyTorch, scikit-learn
and HuggingFace libraries.

I

Spark (1

(

DuckDB (1) -
TQP CPU (
(

(

Spark (6
DuckDB (6

2) 10 20 30
Median end-to-end query time (s)
Query time (in seconds) on a query mixing tree ensemble, one-hot encoding,
feature scaling & concatenation with relational join, aggregation and filtering.
In parentheses are the numbers of cores for CPU-based system:s.

n

Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?

cons

What about performance?
How expensive is it going to be? (engineering wise)

2

n

Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?

What about performance?

Cons

How expensive is it going to be? (engineering wise)

2

n

Pros and Cons of “

Pros

Leverage the massive investments in special HW
Scalable Approach (tensor runtimes are getting ported to each new HW)

|s this even possible?
What about performance?

How expensive is it going to be? (engineering wise)

Less than for TQP+ HB

2

2

Future Directions:

Broader implications of having a DBMS co-existing with an ML runtime

1. Multi-modal data support

Current Mailbox v £ KFC Receipt

File Home Send/Receive View Help Acrobat Search

9 From ,‘:ﬂ Sent To v [%] Subject [L]J Has Attachments 9 Unread DE Categorized v Fh Flagged | |

SELECT
input AS images
image text similarity model("KFC Receipt", input) AS score
FROM attachments
ORDER BY score DESC
LIMIT 1

G

4

Future Directions:

Broader implications of having a DBMS co-existing with an ML runtime

. Example Query Outputs
1. Multi-modal data support
Size Count

2. Automatic Differentiation small |1

Large
Small
Large

Small

P Large
J :, 8 Small
E . Dlglt, Size, () Large

Small

7 / :5 parseImageToTable(Image) Large

C Digit, Size Large

Small
g 2 & Large

Small

- -~ 0 Trainable Table Lorge

Small

Value Function Large

Small

0
1
0
0
1
0
1
0
0
Small 0
1
0
0
2
0
0
2
0
0

{()* Compile SQL to Tensor Programs

Free-ride on SB of dollars of HW/SW investments

Performance looks great
Low engineering costs

Fun future directions

N

i [l Gray Systems Lab

Thanks!
https://aka.ms/gsl

Video credits: http://storyblocks.com

https://aka.ms/gsl

