
Coordination: The Partial
Collapse of Partial Order

Coordination Is the Biggest
Remaining Hard Problem

What IS Coordination?

Pat Helland (Oct 2022)

Copyright Pat Helland - 2022

These are my own
ideas and opinions

Not necessarily reflective of the position
of my employers, past or present

Pat Helland is employed by Salesforce

This is a shortened version of:
“I’m SO Glad I’m Uncoordinated”

Agenda

How Things Have Changed!

2020s1970s

3

Latching in My First Programming Job

• 1978: My first programming job!
• BTI 8000 – SMP (Symmetric Multiprocessor)
• Shared backplane with pluggable CPU cards
• No network

• Scalable Computing!
• Plug in more CPUs...
• 7 CPUs ! 5.5 X throughput!

• 15-Megahertz Clock
• 12 cycles to access memory (750ns)
• Coherent memory (no CPU caches)

• LATCHes, READs, WRITEs ! 750ns

Old (1978)

CPU
Memory
Storage

Bandwidth

Cheap Expensive

Coordination

(same cost as
Read & Write)

4

We’re Getting “Moore” & “Moore” Stuff!

•Moore’s Law: Transistors double
every 18-24 months

• CPU, SSDs, NVMe, and DRAM

• Gilder’s Law: Total bandwidth triples per year
• More connections
• Faster connections

1970

1980

1990

2000

2010

2020

1000

10,000

100,000

1 Million
10 Million

100 Million

1 Billion
10 Billion
50 Billion Transistors

per Chip

1990

2000

2010

2020

10 Mbit
100 Mbit

1 Gbit

10 Gbit
40 Gbit

100 Gbit
400 Gbit

1 Tbit
Ethernet

Bandwidth

50 billion transistors per chip!

400Gbit ethernet now
1Tbit ethernet soon

5

Latency Lags Bandwidth (Patterson-CACM 2004)

Why Does Latency Lags Bandwidth?
There is an old network saying:

Bandwidth problems can be cured with money.

Latency problems are harder because the speed of light is fixed
– You can’t bribe God. -- Anonymous

This slide derived from:
“Latency Lags Bandwidth”

By Dave Patterson –
(Communications of ACM - October 2004)

“Bandwidth improves
by at least the square
of the improvements

in latency.”

Note that latency improved about 10X while
bandwidth improved about 100X to 1000X

Relative
Bandwidth

Improvement

Relative Latency Improvement

10,000 -

1,000 -

100 -

10 -

1 -
100 10 1

Latency improvement =
Bandwidth

Improvement

Memory
Disk

Network

Microprocessor

Statistics from about 1982 to 2004
--

Trend is still true 18 years later!!

6

Waiting for Stuff That’s Far Away
• CPU cores need data

• If they don’t have it, they wait

• The farther away the data, the longer the CPU core waits
• Waiting is inefficient

Cross-Region (2,000km - 200 milliseconds – round trip)

Cross-AZ (2 km – 1 millisecond – round trip)

Same AZ (100 m – 150 mics – round trip)

DRAM (2cm – 100ns – round trip)

L3 Cache (50mm – 25ns – round trip)

L2 Cache (5mm – 6ns – round trip)

L1 Cache (1mm - 1ns – round trip)

CPU Core Register (10 microns - .3ns)

3 million
times as long

600 million
times as long

7

Computer Perspective (3 GHz Clock)

Distance Latency
(wall clock)

Latency
(cycles)

Instruction
Opportunities

Ratio
Distance Time

Human Perspective

Putting Latency in Perspective (2020s)

CPU Register .3 ns 1 cycle 5 or so
(if all is GREAT)

1 My Pocket 1
Second

L1 Cache
(per core)

1 – 1.2 ns
(per core)

3-4
cycles

15– 20
(if all is GREAT)

4 My Desk at
Work

3-4
Secs

L2 Cache
(multi-core

same socket)
6 ns 20

cycles
~ 100

Instructions 20 File Cabinet
(my office)

20
Secs

L3 Cache
(cross-socket)

24-30 ns 72-90
cycles

~ 400– 500
Instructions 80 Another Floor

at Work
1.5

Mins

DRAM 80-100 ns 260-330
cycles

~ 1000 – 1500
Instructions 300 Walk 2 City

Blocks
5

Mins

Cross-Server
RPC/TCP
(local AZ)

150
microseconds

450,000
cycles

~ 2 Million
Instructions 450,000

Walk
100-150 Miles
(160 – 240 km)

5
Days

Cross-AZ
RPC/TCP

1 millisecond
(1,000,000 ns)

3,000,000
cycles

~ 15 Million
Instructions 3,000,000

Walk
600-900 Miles
(1000-1500 km)

One
Month

This slide inspired by:
“AlphaSort: a cache-sensitive

parallel external sort”
By Chris Nyberg, Tom Barclay, Zarka
Cvetanovic, Jim Gray, & Dave Lomet

VLDB – October 1995

20221995

CPU Clock 150 MHz 3 GHz

DRAM Access Cost

Wall Clock 80-100 ns 80-100 ns

Cycles 12-15 260-330

DRAM Is
21 Times
Farther
(2020s

vs 1995) 8

Hubble’s Expanding
Universe

Hubble’s Universe: Everything Is Getting Farther Away

• More stuff and more thinking…
• We can store more stuff
• We can move more data per millisecond
• We can think more per millisecond

• More thinking while waiting for stuff

Cross-Region
Cross-AZ
Same AZ
DRAM
L3 Cache
L2 Cache
L1 Cache

CPU Core Register

Cross-Region
Cross-AZ
Same AZ
DRAM
L3 Cache
L2 Cache
L1 Cache

CPU Core Register 1

4

20
80

300
450,000

3,000,000
600,000,000 9

Waiting: Reading, Writing, & Coordination
• Waiting to READ data from far away?
• Immutable data… easy to cache
• LOTS of data each trip

• Waiting to WRITE data kept far away?
• Appending to a log ! Batch appends
• Reorganize for easy reading

• Waiting to COORDINATE
• Parallel activity is important for many things!
• When can distant activities remain parallel?
• When do parallel activities need coordination?

10

• Parallel activity is powerful
• Concurrent threads, servers, work

• Coordination: Align parallel work
• Share data, control completion,

advance steps

• Coordination in 1978
• Multiple threads & CPUs
• Latch shared data structures

• Coordination in 2022
• Multi-core latches
• Zookeeper via RPCs
• DB via RPCs

Coordination: Aligning Parallel Work

In-Memory Shared Data

2022: Varying coordination delays
• Same server latch 1 cycle to 300 cycles
• Remote server RPC: 450K to 3 million cycles!

Uncontested Coordination!
Much worse if you fight for access…

Coordination
in 1978

Uncontested Latch:
Same Time as

a Single Instruction

11

How Things Have Changed!!

Old (1978)

CPU
Memory
Storage

Bandwidth

Cheap Expensive

Coordination

(same cost as
Read & Write)

New (2022 !)
Cheap

CPU
Memory
Storage

Bandwidth

Expensive

Coordination

Is There an Abstraction for Coordination?
What Can We Do to Reduce the Pain??

12

The Partial Collapse of Partial Order

13

• List: One thing follows exactly one other thing
• Each thing has one parent
• Each parent has one child

• Tree: Many things follow one thing
• Each has exactly one parent
• Each parent may have many children

• DAG (Directed Acyclic Graph):
Many parents & many children
• Each thing may have many parents

and many children

History in a System: Lists, Trees, & DAGs

No CYCLIC Graphs
Can’t Have Cycles in History

Can’t be your own grandfather
14

Lamport: Ordering of Events in a Distributed System

• Leslie Lamport defined event ordering
in a distributed system
• Multiple processes
• Send and receive events
• Events (messages) define the system order

• Happened before: the ordering of events
• Stuff at sending server “happened before”
• Includes happened before of sender

• Partial Order: Messages form partial order
• A DAG of processes and events
• Your time AFTER all that “happened before”

“Time, Clocks, and the Ordering of Events
in a Distributed System”

By Leslie Lamport – (figure 3)
(Communications of ACM – July 1978)

Process P Process Q Process R

Example: an RPC from
Process P to Process Q

15

Newton & Von Neumann: Time as Total Order

• Total order: One thing happens after ONE other
• Follows most recent predecessor
• Everything either before or after

• Newton’s universe: Time marches forward uniformly
• Newton: All clocks are the same
• Time advances at a uniformly everywhere

• Von Neumann computing: One instruction follows another
• In a Von Neumann central computer, all clocks are the same clock

16

Einstein & Lamport: Time as Partial Order

• Partial order:
BEFORE, AFTER, or SIDE-BY-SIDE
• Partial order is a DAG
• Things may follow many predecessors

• Einstein: Each thing has its OWN clock
• Follows ALL predecessors
• Clocks may be slow relative to other clocks
• Paths thru the universe may see different durations

• Lamport: Your predecessors “happened before”
• Follows ALL predecessors
• Clocks may be slow relative to other clocks
• Paths thru the network may see different durations

v

v

v

17

Subjectively, I Really AM the Center of the Universe!

• Partial order is a DAG
• DAG: Directed Acyclic Graph

• Each piece of the DAG is lonely
• Messages come into it
• Messages go out of it

• Lamport clocks:
After what “happened before”

• I see what happened before me
• I don’t see what happens after me

18

Reuniting Branches of the Partial Order

• Coordination:
Reuniting branches of the partial order
• These may be far away, or they may be close by
• Far away in space or far away in time

• Aligning multiple inputs can be painful
• Time: Aligning time is hard
• Space: Aligning distant servers is hard

19

The Partial Collapse of Partial Order

• The Universe is a big place
• Our Earth is a small part of it
• Computation on Earth is a subset of the Universe

• Partial order ! Smaller than the Universe’s Total Order
• Stuff in Andromeda is sharded from stuff on Earth

• Coordination can be small or large
• Across threads, cores, servers, departments, companies, etc.
• Coordination is fractal!

Coordination: The Partial Collapse of Partial Order
Coordination Reduces the Disorder within a System

20

Coordination in a Stretched-out World

21

Ways to Relax Coordination

22

Space

Relax Coordination with Space
• Different space ! Separate coordination
• Big: Earth ≠ Andromeda
• Small: Thread private buffer

• What is separated by space? How do I use it?
• Memory: Reads and writes to memory
• Linearizable objects: A view from outside

• Herlihy & Wing Linearizability
• An object & its operations
• Timing of remote clients’ operations to object

• Serializable database: Looks linearizable from outside & parallel inside!
• Outside: Transactions APPEAR one at a time
• Inside: Parallel execution in database

23

Ways to Relax Coordination

24

Time

>

?

>

>?

Relax Coordination with Time
• Fate sharing reduces coordination
• Dependencies on earlier stuff
• Speculation defers coordination

• Immutable data ! Coalesces speculation
• Immutable inputs ! Functional programming

• Pre-allocation: Speculatively get more stuff
• Get expensive stuff early & avoid waiting

• Retries after timeout == Speculation
• Retrying idempotent work bounds latency

25

Ways to Relax Coordination

26

Layers

Relax Coordination with Layers
• Layers of abstraction
• Avoid side-effects across layers!
• Higher-level operations ! Reduced coordination

• Avoid false dependencies
• Databases (page locks became records locks)
• Microservices encapsulated their memory

• Avoid interference
• Coordinate externally visible semantics, not internal details

• Commutative operations ! Isolate partial order
• CRDTs (Conflict-Free Replicated Data Types) allow reordering

27

Ways to Relax Coordination

28

Equivalence

Relax Coordination with Equivalence
• Good enough: Don’t sweat details
• Updates to caches not atomic
• Relaxed consistency to avoid coordination

• Equivalence: Looks the same to me!
• Examples: Dollar bills, bushels of wheat,

king-sized non-smoking rooms
• Must ignore differences

• Duality: Private versus Shared
• Private work allocates one of the equivalent things
• Shared pool must manage capacity

29

Ways to Relax Coordination

30

Confluence

C

B

A

D

A

D

B

C

Relax Coordination with Confluence
• Confluence: Order of inputs

DOES NOT affect the order of outputs!
• Property of SOME programs
• Same inputs ! Same outputs
• Execution order doesn’t matter!

• Confluence requires some natural order
• The output must be naturally ordered

• Massively parallel work leverages confluence
• Break into pieces ! Order across pieces doesn’t matter ! Execute in any order
• Defer coordination across pieces
• Examples:

• MapReduce, sort, SQL set operations

31

Ways to Relax Coordination

These Are Just the
Ways I’ve Imagined

Do you know any more???

32

Combining Relaxation Techniques (1)
Space (Buffers)
Time (Pre-allocation)
Layer (MALLOC)
Equivalence (Pointers)
Confluence

Yes
Yes
Yes
Yes
No

Per-Thread Memory Pools
• Contention for shared memory too painful
• Create per-thread memory pool
• Allocate big blocks from shared memory per-thread

Space (Shards/Items)
Time (Retries for latency)
Layer (Items in Cache)
Equivalence (Stale OK)
Confluence

Yes
Yes
Yes
Yes
No

Massive Replication of Caches with Asynchronous Updates
• Examples: ECommerce product descriptions and/or Search NGram-shards
• Updates happen from batch jobs across many replicas
• Read from any replica & retry to another other on timeout
• Answers may vary when retried

Space
Time (Speculation)
Layer (Caches vs. Execution)
Equivalence
Confluence

No
Yes
Yes
No
No

Reduce CPU Core Cache Misses
• Speculatively predict instruction branches
• Fetch cache lines that MIGHT be needed
• Example: Apple M1 chip 600-800 out-of-order instructions

Space (shards)
Time (Retries to replicas)
Layer (interface to shard)
Equivalence (shard contents)
Confluence (doc set ops)

Yes
Yes
Yes
Yes
Yes

Internet search operations
• Calculate NGrams of search terms
• Ask search server shards for docs matching NGrams – “pretty good result”
• Retry to shard replicas for latency (Tail at Scale) – “equivalent result”
• Intersect docs matching NGrams desired

Combining Relaxation Techniques (2)
Space (Page/record locking)
Time (Pre-caching data)
Layer (Record/block & more)
Equivalence (Memory alloc)
Confluence (set operations)

Yes
Yes
Yes
Yes
Yes

Record oriented relational databases
• Record locking (transactions) & page locking (internal)
• Caching of data inside the database
• Set oriented operations are disordered in execution
• Allocate big blocks from shared memory per-thread

Space (Application & DB)
Time (Batched changes)
Layer
Equivalence
Confluence

Yes
Yes
No
No
No

Transactional database optimistic updates
• Application reads database and plans updates to make
• Only if no collision are the updates committed
• Reduces trips to the database by bundling many updates

into one trip

It’s Expensive to Decrease Disorder

35

Paraphrasing the Second Law of Thermodynamics
“Disorder in the universe continues to increase”

Takes Energy to
Reduce Disorder
Less Disorder “Here”
Takes Energy “There”

EASY HARD

It’s Expensive to Decrease Disorder

Coordination Is Hard!
Takes Energy to

Decrease Parallelism
Aligning Parallelism Incurs

Costs in the System

EASY HARD

Don’t Coordinate When You Can Avoid It!
36

Takeaways
• Computing has changed

(and is still changing)

• Our solutions are changing
• READ: LOTS of immutable data
• WRITE: Logs and log-structured
• COORDINATE: Hard to pick authority & hard to see the latest truth

• Coordination: Partial collapse of partial order
• HAPPENED BEFORE: Partial order in distributed systems ! Parallel execution
• COORDINATION: Combine parallel stuff to execute together

Old

CPU

Memory

Storage

Bandwidth

Cheap Expensive

Coordination

New
Cheap

CPU

Memory

Storage

Bandwidth

Expensive

Coordination

Coordinate Less Often: Keep Stuff Isolated in Some Dimension(s)
Space

• Shards
• Buffers
• Threads
• Companies

Layer
• Record vs Block
• Internal Details
• Microservices?
• Modules

Equivalent
• King Size Room
• MALLOC
• Bushel of

Wheat

Time
• Speculation
• Retries
• Optimistic

Concurrency

Confluence
• Leverage

existing order
• Execution may

be disodered

37

The End

38

