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NoDB: minimize data-to-query time

SIGMOD 2022 Test-of-Time award
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Adapt data on request



NoDB idea:

Decouple functionality from performance
a N
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Data layout

. User does not need to control when, .
Caching ] best suited for .|

what, how or where data is cached )
raw file format
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An incessantly evolving landscape
SO

Hardware

Workloads

Image: “Three-way tug of war” (https://www.momahler.com/ProArtistManifesto) .

Data management faces its most critical challenges




biological disease sighatures

coupling
clinical measurements with validated biomarkers

Example: Alzheimer’s disease Lol

Clinical - Phenotype Proteomic Genomic Biomarkers afV'O:pM[ a1 KErs

Biomarkers _— GM\PM
Challenge:

“Real-time integration of heterogeneous data



clinical+genetic+timaging data = signature
Patients (CSV) Brain_GrayMatter (Binary)

id Protein: Phenotype
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Trauma .. O = 0-75
55 Chronic - 053 0.3 0.38
Symptoms _
3 .2 56 _ 0.12 0 .. 047
signature: BrainRegions (JSON) l
age > 50 [{ 'id": 1,
AND amygdala {"X":15,"Yy":20, “Vol”: 0.5},

amygdala.Vol > 0.3 {ngcljep.)ogampus}: {"X":17, "Y":10, “Vol”:0.2}},

AND {"id": 3, ...}]
AACT < 1




From LotsOfCode to NoCode

Engine adapts to data
Plug-in per data source
Build auxiliary structures

Interpretation

Overhead Generaté
Te n Type TOrS Reduce branches

v" Minimize function calls

v Pipelining

LEVM
+

Codegen operators, continuously adapting engine



RAW: a single engine for all data RAW

Just ask.

RAW Query is automatically split up for each data source.

Query

FCELEReey
...........
SR
...........

guery-specific
adaptor

CSV

Data is integrated transparently and on-demand.

Users think of all of their data as a unified database,
without preparation



Zero-cost (virtual) database RAW

Just ask.

Frequently
used data

CSV

RAW is now a platform for trusted, live & secure data delivery



Efficient data veracity

Correct ALL errors on ALL data: costly and unnecessary

Duplicate
Elimination

Constraints Validation
L "’i N oo .

Integrity Term Exploratory Query
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Clean useful data adaptively during analysis
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Operations vs Analytics
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Ever-increasing number of concurrent queries
Data freshness bounded by ETL latency



~10K concurrent tasks

i~ N £ )
Optimize » Execute Optimize » Execute Optimize Execute
...m f ﬂ o000
g SplitRe ) | . O\ger‘%{of inte medlate resulfss fs%uirztl emfc.).
: Heuristic-based ortunities
Episode k Eplsode k+1

. Promising | Optimize » Execute

--------------
""""""""""""
. e
. .
* *

Sub-optimal
Global Plans Executor

Real-time learning helps reduce work
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Hybrid Transactional and Analytical Processing

e Transactions: task-parallel G0

— High rate of short-lived processes
— Mostly “point accesses” (high data access locality)

e Analytics: data-parallel th

— Few, but long-running queries

S S S B "00 -

Strong consistency is an invariant




Workload Isolation or Fresh Data?

Collocated workloads fight for resources
Isolated Hybrid-Access Elastic-Compute Collocated

Interference = better data freshness

No interference - better performance

Viable hybrid alternatives



GPU acceleration for HTAP workloads

38
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Transactions store fresh data

on CPU Memory

Data access protected by
concurrency control

Storage

Fetch Fresh Data

Interconnect speed is critical

Analytics access fresh data

through interconnect



Device-conscious processing without regrets
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Execution models that encapsulate heterogeneity ALP .

Accelerator-level parallelism



HetExchange: Heterogeneity-aware plans

SELECT SUM(a)
FROM T aggregate
WHERE b > 42

router

‘Logical plan gpu2cpu

aggregate aggregate

filter

—

filter
IT Decouple data- from control-flow

k

<can unpac »
cpu2gpu
H e

HetExchange

Operators encapsulate trait conversions

router

segmenter



HetExchange in a JITed engine

SELECT SUM(a) :
FROM T aggregate .?.
>
WHERE b Ll;zl uter =g _
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Maximize inter-device utilization
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Rack-scale analytics can use scaleup solutions

e Similar intra-/inter-server interconnect bandwidth
e Local memories and NUMA effects across devices
e CPU-GPU: Capacity-Throughput
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Efficient use of heterogeneous interconnected devices
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Ever-complex data pipelines

Diverse modern data problems img

— 10T, OCR, ML, NLP, Medical, Mathematics etc...

Commercial Al/ML

Database systems catch-up for popular functionality o []

— Human effort and big delays

Augmented
— Oblivious to outside workflows analytics =
. . ((t )))
Vast resource of libraries AV
Ll .
— Authored by domain experts, used by everybody @ ab satgn of fof
and analytics

— Loose library-to-data-sources integration and optimization conversational
analytics and NLP

Declarative programming for learning systems



Heterogeneity in every aspect of data pipelines
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Not ahead-of-time, JUST-IN-TIME! 1



Proteus: taming heterogeneity through adaptivity
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Data
Sources

Snapshot Management & CC

Storage Management & Input Data Cache Tuning
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JIT + no code = fast analytics on fresh data



Intelligent Real-time Systems

Street-smart engines incorporate change as a design principle,
and react to surprises while learning.




