# Systems support for ML: It's all about the choices

Neeraja J. Yadwadkar UT Austin, ECE Nov 8<sup>th</sup>, 2022

With collaborators from Stanford and UT Austin

## What is ML?





A dumb algorithm with lots and lots of data beats a clever one with a modest amount of it!\*

\* A Few Useful Things to Know About Machine Learning, CACM'12

# Why is ML research flourishing?

- Availability of data
- Availability of compute
- Advances in algorithms and models

Abstractions and Interfaces!





## Facebook's pipeline



Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective, HPCA'18

# Google's pipeline

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization



# Design Complexity

### Machine Learning

- Model
- Feature engineering
- Training
- Bias
- Overfitting
- Generalizability
- Accuracy



#### Systems

- Scheduling
- Resource allocation
- Locality
- Fault tolerance
- Power efficiency
- Reliability/Availability
- Security

Systems for ML research brings these two sets of complexities together



# Outline

➤ What is ML?

- > ML Workflow
- Systems for ML: Design Complexity
  - Managed Inference Serving by INFaaS (Deep dive)
- Inference Pipelines using Llama
- Sparsely Activated Massive Models





# Same model, multiple *Model-Variants*!

### Same model, multiple Model-Variants!

Compiler optimizations

TVM, TensorRT



### Same model, multiple Model-Variants!

Compiler optimizations

TVM, TensorRT

Different precisions

INT8, FP16, FP32

Hyperparameter optimizations

Batch size

Heterogeneous Hardware

CPUs, GPUs, ..., \*PUs

### Trade-offs for inference due to heterogeneous hardware



**Observations:** 

- CPUs: increased inference latency with batch-size
- **GPUs**:
  - Higher loading latencies
  - Perform significantly better on high batch sizes

### Trade-offs for inference due to heterogeneous hardware



### Same model, multiple *Model-Variants*!



#### We can compile the same model to 10s (100s) of versions



## Default user choices



• Overprovision:

- Use dedicated resources
- Keep the models "always on"
- Replicate a query across multiple models

# Model-Variants: Challenge, but an untapped Opportunity!

| Challenge                                  | Opportunity                                           |                                                         |
|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| Hardware x<br>Optimizers x<br>Precisions x | A large trade-off<br>space of<br>Latency, Throughput, | Our Proposal:<br><b>Model-Iess</b><br>Inference Serving |
| Hyperparameters<br>→ a large search        | Accuracy, Resources required, and Cost                |                                                         |
| space                                      |                                                       |                                                         |







Key: Automatically and efficiently selecting and scaling model-variants

### INFaaS: A Model-less Inference Serving System

- > No models to generate and manage for users
- > Automatic selection of the right model-variant for each query
- > Autoscaling to respond to the changes in query load

#### INFaaS' Model-less API

#### INFaaS' Model Registration API

 INFaaS' Query Submission API

query(input.jpg, detectFaceApp, latency=200ms, accuracy=70%)

#### INFaaS: Architecture Overview



#### INFaaS: Model Registration Workflow



#### INFaaS: Query Execution Workflow



#### INFaaS: Query Execution Workflow



#### Selecting a Variant



#### INFaaS: Autoscaling Workflow



#### INFaaS' Model-Autoscaler



Question: What combination of variants (types and number) is required to support the changed load?

# Outline

- ➤ What is ML?
- > ML Workflow
- Systems for ML: Design Complexity
- Managed Inference Serving by INFaaS (Deep dive)
  - Inference Pipelines using Llama
- Sparsely Activated Massive Models

# Inference pipelines

- Real-world applications issue pipelines that include inference tasks
  - Example: Video pipelines are ubiquitous with various cost-perf targets





"Add a vintage filter to "Identify cars and faces the video" from the traffic feed"



### Users configure operation knobs to best meet targets

<Hardware resources, batch size, resolution, ...>



#### Challenges:

- Large configuration space
- Input-dependent execution flow
- Exhaustive profiling is expensive



## Llama



Fine-grained SLOs (E2E SLO to per-operation SLOs)

Fine-grained resource allocations (per-video, per-frame)

# Outline

- ➤ What is ML?
- > ML Workflow
- Systems for ML: Design Complexity
- Managed Inference Serving by INFaaS (Deep dive)
- Inference Pipelines using Llama
  - Sparsely Activated Massive Models

# Massive Neural Networks

- The capacity of a neural network to absorb information is limited by its number of parameters.
  - More capacity  $\rightarrow$  more accuracy
  - But more the parameters ightarrow more computation
- So sparse models have been proposed
  - Decreased accuracy
- Conditionally sparse models: parts of the network are activated per example
  - Improved model capacity without increasing number of parameters



\*Outrageously large neural networks: The sparsely-gated Mixture-of-Experts layer, ICLR'17

## Research questions

- Resource allocation for inference requests?
- Inference in resource-constrained edge settings

# Systems support for ML: It's all about the choices

 ML is a new workload that imposes various new trade-offs and choices for systems

- Choices that matter
- Choices that are hard to make
- Who, better than systems folks, should navigate these choices?

Neeraja J.Yadwadkar neeraja@austin.utexas.edu