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What is ML?
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A dumb algorithm with lots and lots of data beats
a clever one with a modest amount of it!*

* A Few Useful Things to Know About Machine Learning, CACM'[2



Why is ML research flourishing?

* Avallability of data
* Avallability of compute

* Advances in algorithms and models

°[Abstractions and Interfaces!]
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Systems for ML Research ML Paper
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Facebook’s pipeline
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Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective, HPCA’|8



Google’s pipeline

[ Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization ]
[ Shared Configuration Framework and Job Orchestration ]
CEE—
- Tuner
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Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

TFX: A TensorFlow-Based Production-Scale Machine Learning Platform, KDD’17



Design Complexity

Machine Learning

Model

Feature engineering

Training
Bias
Overfitting

Generalizablility

Accuracy

Systems

Scheduling
Resource allocation
Locality

Fault tolerance
Power efficiency
Reliability/Availability
Security

Systems for ML research brings these two

sets of complexities together



Systems for ML Research ML Paper

Teaini Model Evaluation,
2 validation

How should we build Inference Serving systems?
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» Sparsely Activated Massive Models



Model Registration

Today’s Inference serving
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Same model, multiple Model-Variants!

Compiler
optimizations

TVM, TensorRT

TensorRT
TensorRT ) Network

Optimizer for faster inference

Trained Neural Network



Same model, multiple Model-Variants!

Compiler Different Hyperparameter
optimizations precisions optimizations

TVM, TensorRT INTS, FP 16, FP32 Batch size CPUs, GPUs, ..., *PUs

Heterogeneous
Hardware



Trade-offs for inference due to heterogeneous hardware
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14 Observations:
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Trade-offs for inference due to heterogeneous hardware
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Same model, multiple Model-Variants!

Compiler Different Hyperparameter
optimizations precisions optimizations

TVM, TensorRT INTS, FP 16, FP32 Batch size CPUs, GPUs, ..., *PUs

Heterogeneous
Hardware

We can compile the same model to 10s (100s) of versions




Diverse application requirements "32@\ @@
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Default user choices
g

* Overprovision:
* Use dedicated resources
* Keep the models “always on”
* Replicate a query across multiple models




Model-Variants:

Challenge, but an untapped Opportunity!

Challenge Opportunity

Hardware x A large trade-off Our Proposal:
Optimizers x space of Model -Iess.
Precisions x Latency, Throughput, Inference Serving
Hyperparameters Accuracy, Resources
—> a large search required, and Cost

RN y




Today’s Inference serving
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Users need to generate, manage,

select, and scale model-variants
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Today’s Inference serving

Model-less Inference serving

Inference User(s) Model Repository
Users need to generate, manage, —

Inference

select, and scale model-variants




Today’s Inference serving

Model-less Inference serving

ResNet50 l

Input,

User(s)

Inference User(s) Model Repository

Users need to generate, manage, ' |
, Inference
select, and scale model-variants

Key: Automatically and efficiently selecting and scaling model-variants



INFaaS: A Model-less Inference Serving System

» No models to generate and manage for users
» Automatic selection of the right model-variant for each query

» Autoscaling to respond to the changes in query load



INFaaS Model-less API

INFaaS" Model Registration API INFaaS" Query Submission API

Register_model (“ResNet50”, query(input. jpg,
ResNet50.pt, detectFaceApp,
validationSet, latency=200ms,

detectFaceApp) accuracy=70%)



INFaaS: Architecture Overview
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(a) Model Registration

(b) Query Execution
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INFaaS: Model Registration Workflow

ResNet50
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INFaaS: Query Execution Workflow

Controller

Query:
Input, req.

User
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(a) Model Registration

(b) Query Execution
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INFaaS: Query Execution Workflow

Dispatcher

a Select a variant
a Select a Worker

» Least-loaded
> Interference-aware



Selecting a Variant

Challenge Proposed Solution
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INFaaS: Autoscaling Workflow
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INFaaS Model-Autoscaler

Model horizontal scaling Model vertical scaling
. . )
Right variant for each query YD eee ), > B Z _ B3
may be different
May not have enough Replication Switch
resources to replicate ) \ Y 7\ Y /
Existing inference Introduced by INFaaS

Serving systems
based on user-specification

Question: What combination of variants (types and number) is required
to support the changed load?
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Inference pipelines

* Real-world applications issue pipelines that include inference tasks
* Example:Video pipelines are ubiquitous with various cost-perf targets

300 sec Pipeline

1 decode
i

preprocess

!

object

I detection l
“Add a vintage filter to “Identify cars and faces Preprfcess P’epffcess

the video” from the traffic feed” Eace recognition] car recognition




Users configure operation knobs to best meet targets

<Hardware resources, batch size, resolution, ...>

Challenges: else
* Large configuration space ' 4%_ ity
* Input-dependent execution flow \
* Exhaustive profiling is expensive : Pﬁ L]
(a) (b) (c)

sequential parallel branching

34




Llama

Serverless
CPU

AWS Lambda, Google Cloud Functions,
Azure Functions, etc.

Serverless
preprocess preprocess
: i *PUs
Eace recognition| |car recognition]
GPUs, FPGAs, TPUs, etc.

Input Video Pipeline

decode
Y

preprocess

\
object

Target [L__detection

-

( )

Fine-grained SLOs (E2E SLO to per-operation SLOs)

Fine-grained resource allocations (per-video, per-frame)

35
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II- Sparsely Activated Massive Models



Massive Neural Networks

* The capacity of a neural network to absorb information is limited by
its number of parameters.
* More capacity = more accuracy
* But more the parameters = more computation

* So sparse models have been proposed
* Decreased accuracy

* Conditionally sparse models: parts of the network are activated per
example
* Improved model capacity without increasing number of parameters



One such way of building conditionally sparse models:
Mixture of Experts (MokEs)

1

A
, /MoE layer N
—> —>
L G(x),| [G(X)nq
MoE MoE
layer layer Expert 1 Expert 3 Expert n
T Gating

Network

*Qutrageously large neural networks: The sparsely-gated Mixture-of-Experts layer, ICLR’17



Research questions

* Resource allocation for inference requests!?

* Inference in resource-constrained edge settings



Systems support for ML: It’s all about the choices

ML is a new workload that imposes various
new trade-offs and choices for systems

e Choices that matter
e Choices that are hard to make

Who, better than systems folks, should
navigate these choices?

Neeraja J. Yadwadkar
neeraja@austin.utexas.edu




