
Systems support for ML:
It’s all about the choices

Neeraja J. Yadwadkar
UT Austin, ECE
Nov 8th, 2022

With collaborators from Stanford and UT Austin

What is ML?

Example #1Example #2Example #3
Example #4

Example #N

* A Few Useful Things to Know About Machine Learning, CACM’12

A dumb algorithm with lots and lots of data beats
a clever one with a modest amount of it!*

Why is ML research flourishing?

• Availability of data

• Availability of compute

• Advances in algorithms and models

• Abstractions and Interfaces!

ML Research

Data
Model,

Algorithm Optimize Test data

Feedback

ML Paper

Systems for ML Research

Data
Model,

Algorithm Optimize Test data

Feedback

ML Paper

Cleaning Pre-
processing

Data
analysis

Data
Transformation

Data
Validation

Training Model Evaluation,
validation

Serving

Facebook’s pipeline

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective, HPCA’18

Google’s pipeline

TFX: A TensorFlow-Based Production-Scale Machine Learning Platform, KDD’17

Design Complexity

Systems for ML research brings these two
sets of complexities together

Machine Learning Systems

• Model
• Feature engineering
• Training
• Bias
• Overfitting
• Generalizability
• Accuracy

• Scheduling
• Resource allocation
• Locality
• Fault tolerance
• Power efficiency
• Reliability/Availability
• Security

Systems for ML Research

Data
Model,

Algorithm Optimize Test data

Feedback

ML Paper

Cleaning Pre-
processing

Data
analysis

Data
Transformation

Data
Validation

Training Model Evaluation,
validation

ServingThis talk!

How should we build Inference Serving systems?

Outline

Ø What is ML?
Ø ML Workflow
Ø Systems for ML: Design Complexity
Ø Managed Inference Serving by INFaaS (Deep dive)
Ø Inference Pipelines using Llama
Ø Sparsely Activated Massive Models

User

Register
a model

Model
Repository

Today’s Inference serving

Invoke a Model

User(s) Today’s
Inference Serving

Inference

Model Registration

ML/Data
Scientist(s)

Same model,

multiple Model-Variants!

Same model, multiple Model-Variants!

Trained Neural Network

TensorRT
Optimizer

TensorRT
Network

for faster inference

Compiler
optimizations

TVM, TensorRT

Compiler
optimizations

Same model, multiple Model-Variants!

TVM, TensorRT INT8, FP16, FP32 Batch size

Different
precisions

Hyperparameter
optimizations

CPUs, GPUs, …, *PUs

Heterogeneous
Hardware

Observations:
• CPUs: increased inference latency with batch-size
• GPUs:
• Higher loading latencies
• Perform significantly better on high batch sizes

Trade-offs for inference due to heterogeneous hardware

14

Trade-offs for inference due to heterogeneous hardware

15

Compiler
optimizations

Same model, multiple Model-Variants!

TVM, TensorRT INT8, FP16, FP32 Batch size

Different
precisions

Hyperparameter
optimizations

We can compile the same model to 10s (100s) of versions

CPUs, GPUs, …, *PUs

Heterogeneous
Hardware

Diverse application requirements

Example: Face Recognition

Latency
Social Media

Latency
Accuracy Cost

Navigation for
visually impaired person

Face
Recognition

Accuracy

Object
Detection

Default user choices

• Overprovision:
• Use dedicated resources
• Keep the models “always on”
• Replicate a query across multiple models

Model-Variants:
Challenge, but an untapped Opportunity!

Hardware x
Optimizers x
Precisions x

Hyperparameters
à a large search

space

A large trade-off
space of

Latency, Throughput,
Accuracy, Resources
required, and Cost

Challenge Opportunity

Our Proposal:
Model-less

Inference Serving

Today’s Inference serving

Input,

User(s) Today’s
Inference Serving

Inference

Hardware architecture

CPUs GPUs FPGAs ASICs

User(s)

ResNet50

Optimizer

TVM
Hyperparameter

optimizations
Different
precisions

Users need to generate, manage,
select, and scale model-variants

Today’s Inference serving

Input,
App Req

User(s)

Inference

User(s)

ResNet50

Model Repository

Model-less Inference serving

Input,

User(s) Today’s
Inference Serving

Inference

User(s)

ResNet50

Users need to generate, manage,
select, and scale model-variants

Today’s Inference serving

Input,
App Req

User(s)

Inference

User(s)

ResNet50

Model Repository

Model-less Inference serving

MODEL-LESS

Key: Automatically and efficiently selecting and scaling model-variants

Input,

User(s) Today’s
Inference Serving

Inference

User(s)

ResNet50

Users need to generate, manage,
select, and scale model-variants

INFaaS: A Model-less Inference Serving System

Ø No models to generate and manage for users
Ø Automatic selection of the right model-variant for each query
Ø Autoscaling to respond to the changes in query load

INFaaS’ Model-less API

Register_model(“ResNet50”,
ResNet50.pt,
validationSet,
detectFaceApp)

INFaaS’ Model Registration API INFaaS’ Query Submission API

query(input.jpg,
detectFaceApp,
latency=200ms,
accuracy=70%)

INFaaS: Architecture Overview

Variant Selection Policy

Dispatcher

VM-Autoscaler

Meta-
Data
Store

Variant Selection Policy

Model-Autoscaler

Dispatcher HW Executors

Model-Repo

Variant-Generator

Variant-Profiler

Controller

Workers

Fr
on

t E
nd

(a) Model Registration

(b) Query Execution

(c) Autoscaling

Three Workflows:

INFaaS: Model Registration Workflow

Variant Selection Policy

Dispatcher

VM-Autoscaler

Meta-
Data
Store

Variant Selection Policy

Model-Autoscaler

Dispatcher HW Executors

Model-Repo

Variant-Generator

Variant-Profiler

Controller

Workers

Fr
on

t E
nd

(a) Model Registration

User

ResNet50

ML/Data
Scientist(s)

(b) Query Execution

(c) Autoscaling

Three Workflows:

…

Generator Profiler
Accuracy

Cost ($)

Perf.

INFaaS: Query Execution Workflow

Variant Selection Policy

Dispatcher

VM-Autoscaler

Meta-
Data
Store

Variant Selection Policy

Model-Autoscaler

Dispatcher HW Executors

Model-Repo

Variant-Generator

Variant-Profiler

Controller

Workers

Fr
on

t E
nd

(a) Model Registration

UserML/Data
Scientist(s)

(b) Query Execution

(c) Autoscaling

Three Workflows:
Query:

Input, req.

INFaaS: Query Execution Workflow

Variant Selection Policy

Dispatcher

VM-Autoscaler

Meta-
Data
Store

Variant Selection Policy

Model-Autoscaler

Dispatcher HW Executors

Model-Repo

Variant-Generator

Variant-Profiler

Controller

Workers

Fr
on

t E
nd

(a) Model Registration

UserML/Data
Scientist(s)

(b) Query Execution

(c) Autoscaling

Three Workflows:
Query:

Input, req.
Dispatcher

1 Select a variant

2 Select a Worker

Ø Least-loaded
Ø Interference-aware

Selecting a Variant

Query Requirements

Model-Repo

map

Goal Challenge Proposed Solution

• Just Static profile of variants
isn’t enough

• Selected variant may not be
loaded

• Selected variant may be
overloaded or interfered

• System may not have
enough resources

• Choice also depends on the
Dynamic state of the variants

Accuracy

Cost ($)

Perf.

Variant-Profiler

… Inactive Active

Interfered

Overloaded

Registered/
Generated

Model-variant Loaded

Unloaded

Unloaded

Unloaded

Contended

Mitigated

QPS > Peak

Contended

Mitigated

State is maintained per
variant by the workers at

the Metadata-Store

INFaaS: Autoscaling Workflow

Variant Selection Policy

Dispatcher

VM-Autoscaler

Meta-
Data
Store

Variant Selection Policy

Model-Autoscaler

Dispatcher HW Executors

Model-Repo

Variant-Generator

Variant-Profiler

Controller

Workers

Fr
on

t E
nd

(a) Model Registration

(b) Query Execution

(c) Autoscaling

Three Workflows:

INFaaS’ Model-Autoscaler

Replication Switch

• Right variant for each query
may be different

• May not have enough
resources to replicate

Existing inference
Serving systems

based on user-specification

Introduced by INFaaS

Model horizontal scaling Model vertical scaling

Question: What combination of variants (types and number) is required
to support the changed load?

Outline
Ø What is ML?
Ø ML Workflow
Ø Systems for ML: Design Complexity
Ø Managed Inference Serving by INFaaS (Deep dive)
Ø Inference Pipelines using Llama
Ø Sparsely Activated Massive Models

Inference pipelines
• Real-world applications issue pipelines that include inference tasks
• Example: Video pipelines are ubiquitous with various cost-perf targets

“Add a vintage filter to
the video”

“Identify cars and faces
from the traffic feed”

decode

preprocess

object
detection

preprocess preprocess

face recognition car recognition

Pipeline300 sec

Users configure operation knobs to best meet targets

<Hardware resources, batch size, resolution, …>

34

Challenges:
• Large configuration space
• Input-dependent execution flow
• Exhaustive profiling is expensive

(a)
sequential

(b)
parallel

(c)
branching

if

else

Llama

35

Llama
decode

preprocess

object
detection

preprocess preprocess

face recognition car recognition

Input Video

Target

Pipeline

AWS Lambda, Google Cloud Functions,
Azure Functions, etc.

Serverless
CPU

Serverless
*PUs

GPUs, FPGAs, TPUs, etc.

Serverless
*PUs

Fine-grained SLOs (E2E SLO to per-operation SLOs)

Fine-grained resource allocations (per-video, per-frame)

Outline
Ø What is ML?
Ø ML Workflow
Ø Systems for ML: Design Complexity
Ø Managed Inference Serving by INFaaS (Deep dive)
Ø Inference Pipelines using Llama
Ø Sparsely Activated Massive Models

Massive Neural Networks

• The capacity of a neural network to absorb information is limited by
its number of parameters.
• More capacity à more accuracy
• But more the parameters à more computation

• So sparse models have been proposed
• Decreased accuracy

• Conditionally sparse models: parts of the network are activated per
example
• Improved model capacity without increasing number of parameters

One such way of building conditionally sparse models:
Mixture of Experts (MoEs)

*Outrageously large neural networks: The sparsely-gated Mixture-of-Experts layer, ICLR’17

Research questions

• Resource allocation for inference requests?

• Inference in resource-constrained edge settings

Systems support for ML: It’s all about the choices

• ML is a new workload that imposes various
new trade-offs and choices for systems
• Choices that matter
• Choices that are hard to make

• Who, better than systems folks, should
navigate these choices?

Neeraja J. Yadwadkar
neeraja@austin.utexas.edu

