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What is ML?

Example #1Example #2Example #3
Example #4

Example #N

* A Few Useful Things to Know About Machine Learning, CACM’12

A dumb algorithm with lots and lots of data beats 
a clever one with a modest amount of it!*



Why is ML research flourishing?

• Availability of data

• Availability of compute

• Advances in algorithms and models

• Abstractions and Interfaces!
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Facebook’s pipeline

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective, HPCA’18



Google’s pipeline

TFX: A TensorFlow-Based Production-Scale Machine Learning Platform, KDD’17



Design Complexity

Systems for ML research brings these two 
sets of complexities together

Machine Learning Systems

• Model
• Feature engineering
• Training
• Bias
• Overfitting
• Generalizability
• Accuracy

• Scheduling
• Resource allocation
• Locality
• Fault tolerance
• Power efficiency
• Reliability/Availability
• Security
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How should we build Inference Serving systems?



Outline

Ø What is ML?
Ø ML Workflow
Ø Systems for ML: Design Complexity
Ø Managed Inference Serving by INFaaS (Deep dive)
Ø Inference Pipelines using Llama
Ø Sparsely Activated Massive Models
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Same model, multiple Model-Variants!
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Observations: 
• CPUs: increased inference latency with batch-size
• GPUs: 
• Higher loading latencies
• Perform significantly better on high batch sizes

Trade-offs for inference due to heterogeneous hardware

14



Trade-offs for inference due to heterogeneous hardware

15



Compiler 
optimizations

Same model, multiple Model-Variants!

TVM,  TensorRT INT8, FP16, FP32 Batch size

Different 
precisions

Hyperparameter 
optimizations

We can compile the same model to 10s (100s) of versions

CPUs, GPUs, …, *PUs

Heterogeneous
Hardware



Diverse application requirements

Example: Face Recognition

Latency
Social Media

Latency
Accuracy Cost

Navigation for 
visually impaired person

Face 
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Accuracy
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Default user choices

• Overprovision: 
• Use dedicated resources
• Keep the models “always on”
• Replicate a query across multiple models



Model-Variants: 
Challenge, but an untapped Opportunity!

Hardware x 
Optimizers x 
Precisions x 

Hyperparameters 
à a large search 

space

A large trade-off 
space of 

Latency, Throughput, 
Accuracy, Resources 
required, and Cost

Challenge Opportunity

Our Proposal:
Model-less

Inference Serving
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Today’s Inference serving

Input, 
App Req

User(s)

Inference

User(s)

ResNet50

Model Repository

Model-less Inference serving

MODEL-LESS

Key: Automatically and efficiently selecting and scaling model-variants
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INFaaS: A Model-less Inference Serving System

Ø No models to generate and manage for users
Ø Automatic selection of the right model-variant for each query
Ø Autoscaling to respond to the changes in query load



INFaaS’ Model-less API

Register_model(“ResNet50”, 
ResNet50.pt, 
validationSet, 
detectFaceApp)

INFaaS’ Model Registration API INFaaS’ Query Submission API 

query(input.jpg, 
detectFaceApp, 
latency=200ms, 
accuracy=70%)



INFaaS: Architecture Overview
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INFaaS: Model Registration Workflow
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INFaaS: Query Execution Workflow

Variant Selection Policy

Dispatcher

VM-Autoscaler

Meta-
Data
Store

Variant Selection Policy

Model-Autoscaler

Dispatcher HW Executors

Model-Repo

Variant-Generator

Variant-Profiler

Controller

Workers

Fr
on

t E
nd

(a) Model Registration 

UserML/Data 
Scientist(s)

(b) Query Execution

(c) Autoscaling

Three Workflows: 
Query:

Input, req.



INFaaS: Query Execution Workflow
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1 Select a variant

2 Select a Worker

Ø Least-loaded
Ø Interference-aware



Selecting a Variant

Query Requirements

Model-Repo

map

Goal Challenge Proposed Solution

• Just Static profile of variants 
isn’t enough

• Selected variant may not be 
loaded

• Selected variant may be 
overloaded or interfered

• System may not have 
enough resources

• Choice also depends on the 
Dynamic state of the variants
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INFaaS: Autoscaling Workflow
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INFaaS’ Model-Autoscaler

Replication Switch

• Right variant for each query 
may be different

• May not have enough 
resources to replicate

Existing inference
Serving systems 

based on user-specification

Introduced by INFaaS

Model horizontal scaling Model vertical scaling

Question: What combination of variants (types and number) is required 
to support the changed load?
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Ø Sparsely Activated Massive Models



Inference pipelines
• Real-world applications issue pipelines that include inference tasks
• Example: Video pipelines are ubiquitous with various cost-perf targets

“Add a vintage filter to 
the video”

“Identify cars and faces 
from the traffic feed”

decode

preprocess

object 
detection

preprocess preprocess

face recognition car recognition

Pipeline300 sec



Users configure operation knobs to best meet targets

<Hardware resources, batch size, resolution, …>

34

Challenges:
• Large configuration space
• Input-dependent execution flow
• Exhaustive profiling is expensive

(a)
sequential

(b)
parallel

(c)
branching

if

else



Llama

35

Llama
decode

preprocess

object 
detection

preprocess preprocess

face recognition car recognition

Input Video

Target

Pipeline

AWS Lambda, Google Cloud Functions, 
Azure Functions, etc.

Serverless 
CPU

Serverless 
*PUs

GPUs, FPGAs, TPUs, etc.

Serverless 
*PUs

Fine-grained SLOs (E2E SLO to per-operation SLOs)

Fine-grained resource allocations (per-video, per-frame)
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Massive Neural Networks

• The capacity of a neural network to absorb information is limited by 
its number of parameters.
• More capacity à more accuracy
• But more the parameters à more computation

• So sparse models have been proposed
• Decreased accuracy

• Conditionally sparse models: parts of the network are activated per 
example
• Improved model capacity without increasing number of parameters



One such way of building conditionally sparse models: 
Mixture of Experts (MoEs)

*Outrageously large neural networks: The sparsely-gated Mixture-of-Experts layer, ICLR’17



Research questions

• Resource allocation for inference requests?

• Inference in resource-constrained edge settings



Systems support for ML: It’s all about the choices

• ML is a new workload that imposes various 
new trade-offs and choices for systems
• Choices that matter
• Choices that are hard to make

• Who, better than systems folks, should 
navigate these choices?

Neeraja J. Yadwadkar
neeraja@austin.utexas.edu


