
Making Peace Between Mortal Enemies:
Running a Database Management

System in the Linux Kernel

Matt Butrovich
Carnegie Mellon University

September 16, 2024

The OS Is Not Our Friend

2

The OS Is Not Our Friend

“The bottom line is that
operating system services in
many existing systems are

either too slow or
inappropriate.”

Michael Stonebraker. Operating System Support for Database
Management. Commun. ACM. 1981.

2

My friend Mike

3

The Feud Goes On…

[Async I/O] is a horrible ad-hoc design, with the main excuse
being "other, less gifted people, made that design, and we are
implementing it for compatibility because database people -

who seldom have any shred of taste - actually use it".

3

The Feud Goes On…

Linus Torvalds. Re: [PATCH 09/13] aio: add support for async
openat(). LKML. 2016.

4

And On…

Linux tends to kill the postmaster in out-of-memory
situations, because it blames the postmaster for the sum of

child process sizes *including shared memory*. (This is
unbelievably stupid, but the kernel hackers seem

uninterested in improving it.)

4

And On…

postgres/src/backed/postmaster/fork_process.c:74

User-Bypass

User-space DBMS

5

User-Bypass

User-bypass DBMS

5

User-Bypass

User-bypass DBMS

5

User-Bypass

User-bypass DBMS

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

5

User-Bypass

User-bypass DBMS

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user
threads, and system call overhead

5

User-Bypass

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and Performance in
the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level networking
on exokernel systems. ACM Trans. Comput. Syst. 2002.

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user
threads, and system call overhead

5

extended Berkeley Packet Filter

6

extended Berkeley Packet Filter
• Safe, event-driven programs in

kernel-space

6

extended Berkeley Packet Filter
• Safe, event-driven programs in

kernel-space

6

extended Berkeley Packet Filter
• Safe, event-driven programs in

kernel-space

• Write in C and compile to
eBPF

6

extended Berkeley Packet Filter
• Safe, event-driven programs in

kernel-space

• Write in C and compile to
eBPF

6

extended Berkeley Packet Filter
• Safe, event-driven programs in

kernel-space

• Write in C and compile to
eBPF

• Verifier constraints:

• # instructions, boundedness,
memory safety, limited API

6

eBPF Environment

7

eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”

• Kernel-space ⇒ observe/modify OS logic

7

eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”

• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution
• No heap allocations

7

eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”

• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution
• No heap allocations

• eBPF maps: kernel-resident data structures
• Key-value interface

• Hash tables, stacks/queues, arrays, etc.

7

8

eBPF in the Wild

• eBPF merged into Linux
kernel in 2014

8

eBPF in the Wild

• eBPF merged into Linux
kernel in 2014

• New features with each
kernel release

8

eBPF in the Wild

• eBPF merged into Linux
kernel in 2014

• New features with each
kernel release

• Widely deployed in
hyperscalers

8

eBPF in the Wild

• eBPF merged into Linux
kernel in 2014

• New features with each
kernel release

• Widely deployed in
hyperscalers

8

eBPF in the Wild

eBPF DBMS

9

eBPF DBMS

9

10

The Verifier Strikes Back

• User-bypass programs limited to 1M eBPF instructions

10

The Verifier Strikes Back

• User-bypass programs limited to 1M eBPF instructions

• User-bypass programs limited to 1M verified eBPF
instructions

10

The Verifier Strikes Back

• User-bypass programs limited to 1M eBPF instructions

• User-bypass programs limited to 1M verified eBPF
instructions

• Branches and loops all need to be explored

10

The Verifier Strikes Back

• User-bypass programs limited to 1M eBPF instructions

• User-bypass programs limited to 1M verified eBPF
instructions

• Branches and loops all need to be explored

• Recursion is almost impossible

10

The Verifier Strikes Back

• User-bypass programs limited to 1M eBPF instructions

• User-bypass programs limited to 1M verified eBPF
instructions

• Branches and loops all need to be explored

• Recursion is almost impossible

• Tail-calling between eBPF programs (up to 32) helps

10

The Verifier Strikes Back

11

BPF-DB Goals

• Design and implement BPF-DB with traditional DBMS
components and features (e.g., ACID transactions)

11

BPF-DB Goals

• Design and implement BPF-DB with traditional DBMS
components and features (e.g., ACID transactions)

• Decompose DBMS components using continuation passing
style to satisfy eBPF verifier

11

BPF-DB Goals

• Design and implement BPF-DB with traditional DBMS
components and features (e.g., ACID transactions)

• Decompose DBMS components using continuation passing
style to satisfy eBPF verifier

• Developers build rich applications using BPF-DB as their
backing store (e.g., RocksDB for eBPF)

11

BPF-DB Goals

12

GET Tail-Calls

12

GET Tail-Calls

12

GET Tail-Calls

12

GET Tail-Calls

12

GET Tail-Calls

13

Storage Management

• Goal: Store database
contents in kernel-resident
thread-safe data structures

13

Storage Management

• Goal: Store database
contents in kernel-resident
thread-safe data structures

• Challenges:

• No heap ⇒ no malloc

• eBPF maps use fixed size
keys and values

• Verifier limits versions

13

Storage Management

• Goal: Store database
contents in kernel-resident
thread-safe data structures

• Challenges:

• No heap ⇒ no malloc

• eBPF maps use fixed size
keys and values

• Verifier limits versions

13

Storage Management

14

Storage Management

14

Storage Management

14

Storage Management

• Bounded, unordered
version arrays

14

Storage Management

• Bounded, unordered
version arrays

• Cooperative GC on SET

14

Storage Management

• Bounded, unordered
version arrays

• Cooperative GC on SET

• Database contents
separate from DBMS logic

14

Storage Management

Aakash Goel et al. Fast Database Restarts at Facebook. SIGMOD.
2014.

15

Transaction Management

• Goal: Implement concurrency control protocol to allow
multi-statement transactions that ensure ACID properties

15

Transaction Management

• Goal: Implement concurrency control protocol to allow
multi-statement transactions that ensure ACID properties

• Challenges:

• Restrictive atomic primitives

• Boundedness limits spinning

• eBPF program execution cannot yield

15

Transaction Management

16

Transaction Management

16

Transaction Management

16

Transaction Management

• Strict MV2PL

16

Transaction Management

• Strict MV2PL

• No-wait instead of wound-
wait or wait-die

16

Transaction Management

Yingjun Wu et al. An Empirical Evaluation of In-Memory Multi-
Version Concurrency Control. VLDB. 2017.

• Strict MV2PL

• No-wait instead of wound-
wait or wait-die

• Read-only optimizations

16

Transaction Management

Philip A. Bernstein et al. Concurrency Control and Recovery in
Database Systems. 1987.

Yingjun Wu et al. An Empirical Evaluation of In-Memory Multi-
Version Concurrency Control. VLDB. 2017.

Write-Ahead Logging

17

Write-Ahead Logging
• Goal: Persist database contents to disk both through write-

ahead logging

17

Write-Ahead Logging
• Goal: Persist database contents to disk both through write-

ahead logging

• Challenges:

• eBPF programs cannot initiate disk access

• Database contents are stored in kernel-resident data

17

18

Write-Ahead Logging

18

Write-Ahead Logging

• Logical logging via ring
buffer to user-space

18

Write-Ahead Logging

• Logical logging via ring
buffer to user-space

• User-space can persist on
disk or over network

18

Write-Ahead Logging

• Logical logging via ring
buffer to user-space

• User-space can persist on
disk or over network

• Checkpointing requires to
quiesce the DBMS

18

Write-Ahead Logging

Conclusion

19

Conclusion
• eBPF’s verifier introduces new design constraints beyond

traditional software engineering and runtime performance limits

19

Conclusion
• eBPF’s verifier introduces new design constraints beyond

traditional software engineering and runtime performance limits

• Our eBPF DBMS benefits from storing database contents in
kernel-resident data structures and enables new classes of eBPF
applications

19

Conclusion
• eBPF’s verifier introduces new design constraints beyond

traditional software engineering and runtime performance limits

• Our eBPF DBMS benefits from storing database contents in
kernel-resident data structures and enables new classes of eBPF
applications

• Adaptation generates a customized DBMS for the client
application

19

	Default Section
	Slide 1: Making Peace Between Mortal Enemies: Running a Database Management System in the Linux Kernel

	User-Bypass
	Slide 2: The OS Is Not Our Friend
	Slide 3: The OS Is Not Our Friend
	Slide 4: The Feud Goes On…
	Slide 5: The Feud Goes On…
	Slide 6: And On…
	Slide 7: And On…
	Slide 8: User-Bypass
	Slide 9: User-Bypass
	Slide 10: User-Bypass
	Slide 11: User-Bypass
	Slide 12: User-Bypass
	Slide 13: User-Bypass
	Slide 14: extended Berkeley Packet Filter
	Slide 15: extended Berkeley Packet Filter
	Slide 16: extended Berkeley Packet Filter
	Slide 17: extended Berkeley Packet Filter
	Slide 18: extended Berkeley Packet Filter
	Slide 19: extended Berkeley Packet Filter
	Slide 20: eBPF Environment
	Slide 21: eBPF Environment
	Slide 22: eBPF Environment
	Slide 23: eBPF Environment
	Slide 24: eBPF in the Wild
	Slide 25: eBPF in the Wild
	Slide 26: eBPF in the Wild
	Slide 27: eBPF in the Wild
	Slide 28: eBPF in the Wild

	BPF-DB
	Slide 29: eBPF DBMS
	Slide 30: eBPF DBMS
	Slide 31: The Verifier Strikes Back
	Slide 32: The Verifier Strikes Back
	Slide 33: The Verifier Strikes Back
	Slide 34: The Verifier Strikes Back
	Slide 35: The Verifier Strikes Back
	Slide 36: The Verifier Strikes Back
	Slide 37: BPF-DB Goals
	Slide 38: BPF-DB Goals
	Slide 39: BPF-DB Goals
	Slide 40: BPF-DB Goals
	Slide 41: GET Tail-Calls
	Slide 42: GET Tail-Calls
	Slide 43: GET Tail-Calls
	Slide 44: GET Tail-Calls
	Slide 45: GET Tail-Calls
	Slide 46: Storage Management
	Slide 47: Storage Management
	Slide 48: Storage Management
	Slide 49: Storage Management
	Slide 50: Storage Management
	Slide 51: Storage Management
	Slide 52: Storage Management
	Slide 53: Storage Management
	Slide 54: Storage Management
	Slide 55: Storage Management
	Slide 56: Transaction Management
	Slide 57: Transaction Management
	Slide 58: Transaction Management
	Slide 59: Transaction Management
	Slide 60: Transaction Management
	Slide 61: Transaction Management
	Slide 62: Transaction Management
	Slide 63: Transaction Management
	Slide 64: Transaction Management
	Slide 65: Write-Ahead Logging
	Slide 66: Write-Ahead Logging
	Slide 67: Write-Ahead Logging
	Slide 68: Write-Ahead Logging
	Slide 69: Write-Ahead Logging
	Slide 70: Write-Ahead Logging
	Slide 71: Write-Ahead Logging
	Slide 72: Write-Ahead Logging

	Conclusion
	Slide 73: Conclusion
	Slide 74: Conclusion
	Slide 75: Conclusion
	Slide 76: Conclusion

