
Making Peace Between Mortal Enemies: 
Running a Database Management 

System in the Linux Kernel

Matt Butrovich
Carnegie Mellon University

September 16, 2024



The OS Is Not Our Friend

2



The OS Is Not Our Friend

“The bottom line is that 
operating system services in 
many existing systems are 

either too slow or 
inappropriate.”

Michael Stonebraker. Operating System Support for Database 
Management. Commun. ACM. 1981.
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My friend Mike
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The Feud Goes On…



[Async I/O] is a horrible ad-hoc design, with the main excuse 
being "other, less gifted people, made that design, and we are 
implementing it for compatibility because database people - 

who seldom have any shred of taste - actually use it".
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The Feud Goes On…

Linus Torvalds. Re: [PATCH 09/13] aio: add support for async 
openat(). LKML. 2016.
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And On…



Linux tends to kill the postmaster in out-of-memory 
situations, because it blames the postmaster for the sum of 

child process sizes *including shared memory*.  (This is 
unbelievably stupid, but the kernel hackers seem 

uninterested in improving it.)
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And On…

postgres/src/backed/postmaster/fork_process.c:74
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User-Bypass

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and Performance in 
the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving 
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level networking 
on exokernel systems. ACM Trans. Comput. Syst. 2002.

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead
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extended Berkeley Packet Filter
• Safe, event-driven programs in 

kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:

• # instructions, boundedness, 
memory safety, limited API
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eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”

• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution
• No heap allocations

• eBPF maps: kernel-resident data structures
• Key-value interface

• Hash tables, stacks/queues, arrays, etc.
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• User-bypass programs limited to 1M eBPF instructions

• User-bypass programs limited to 1M verified eBPF 
instructions

• Branches and loops all need to be explored

• Recursion is almost impossible

• Tail-calling between eBPF programs (up to 32) helps
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• Design and implement BPF-DB with traditional DBMS 
components and features (e.g., ACID transactions)

• Decompose DBMS components using continuation passing 
style to satisfy eBPF verifier

• Developers build rich applications using BPF-DB as their 
backing store (e.g., RocksDB for eBPF)
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• Bounded, unordered 
version arrays

• Cooperative GC on SET

• Database contents 
separate from DBMS logic
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Storage Management

Aakash Goel et al. Fast Database Restarts at Facebook. SIGMOD. 
2014.
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• Goal: Implement concurrency control protocol to allow 
multi-statement transactions that ensure ACID properties

• Challenges:

• Restrictive atomic primitives

• Boundedness limits spinning

• eBPF program execution cannot yield
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• Strict MV2PL

• No-wait instead of wound-
wait or wait-die
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Yingjun Wu et al. An Empirical Evaluation of In-Memory Multi-
Version Concurrency Control. VLDB. 2017.



• Strict MV2PL

• No-wait instead of wound-
wait or wait-die

• Read-only optimizations

16

Transaction Management

Philip A. Bernstein et al. Concurrency Control and Recovery in 
Database Systems. 1987.

Yingjun Wu et al. An Empirical Evaluation of In-Memory Multi-
Version Concurrency Control. VLDB. 2017.
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Write-Ahead Logging
• Goal: Persist database contents to disk both through write-

ahead logging

• Challenges:

• eBPF programs cannot initiate disk access

• Database contents are stored in kernel-resident data
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• Logical logging via ring 
buffer to user-space

• User-space can persist on 
disk or over network

• Checkpointing requires to 
quiesce the DBMS
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Write-Ahead Logging
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Conclusion
• eBPF’s verifier introduces new design constraints beyond 

traditional software engineering and runtime performance limits

• Our eBPF DBMS benefits from storing database contents in 
kernel-resident data structures and enables new classes of eBPF 
applications

• Adaptation generates a customized DBMS for the client 
application
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