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DBMS on top of OS
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DBMS Process

General-purpose OS

Hardware



DB-OS Interface Mismatch

Performance
Hardware Control 

Security
Resource Efficiency  

PO
SIX
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AIO is a horrible ad-hoc design, with the main excuse 
being "other, less gifted people, made that design, 
and we are implementing it for compatibility because 
database people - who seldom have any shred of 
taste - actually use it".  

- Linus Torvalds in 2016



OS on top of DBMS
● The DBOS-project

● Requires a revolution
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OS Services

DBMS

Hardware



A Middle-ground: Co-design 
● Blurring the boundary of DB and OS

● Some pieces in the OS

● Focus of this talk
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DBMS+OS

Hardware



Co-design Paradigms

Modified Linux Kernel:
Hacking/Kernel Module/eBPF Kernel Bypass

DB Process DB Process

Hardware Hardware
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Case Study: Virtual Memory Snapshotting

● Redis uses fork to save process memory as checkpoints for persistence

● fork is blocking and requires threads to be paused to get a consistent 

snapshot
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Redis p100 Query Latency during Checkpointing



● Linux kernel maintains a per-page reference count for safe page reclamation –

a fundamental design decision to support shared-memory, page cache …

fork Bottleneck Analysis

P1 P2 P3 P4Physical Memory

Virtual Memory Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page 
reference count

~90% cycles due to cache 
misses and random accesses

2 2 2
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Co-design Paradigms for this Problem

Linux with Specialized VM 
Subsystem Kernel Bypass

● Security/stability issue
● CrowdStrike incident

● Fundamental design 

limitation

● Only works for 

networking and 

storage

DB Process DB Process

Hardware Hardware
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User Bypass: eBPF

● Limited 

programmability 

DB Process

Hardware

DBMS



Privileged Kernel-Bypass: complete 
freedom to specialize  subsystems 
while minimizing impact on security, 
stability, and compatibility
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Specialize in an Unconstrained and Safe Place – Virtualized 
Environment 

Linux Kernel

DB process

Ad-hoc 
Optimizations
/Abstractions Linux Kernel

Privileged DB 
processAd-hoc 

Optimizations
/Abstractions
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● There is a class of hypervisors[1] (Dune) that raises the privilege level of a 

Linux process
○ Runs in Guest Kernel Space with access to all privileged instructions: paging, 

interrupts, rings…

○ Preserves process abstraction to reuse host kernel features

Hypervisor



Privileged Kernel-Bypass: Selectively Specialize Data-
Intensive Subsystem

Linux Kernel

Privileged DB process
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Hypervisor

Specialized 
VM/Snapshot System

VM subsystem
Snapshotting

Scheduler I/O 
Stacks



Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS
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Kernel-Bypass Privileged Kernel-Bypass

DBMS runs in User space Guest Kernel Space

Specializes Network/Storage Virtual Memory/Scheduler/Interrupt
/Network/Storage



Numerous Possibilities

● Fast snapshotting. ç

● A “perfect mmap” buffer manager ?

● Faster memory-rewiring for DBMS applications

● UDF sandboxing: UDF in guest userspace and DBMS in guest kernel space.

● Lightweight Preemptive Scheduler

● Faster memory allocation 

● ……

16



Attacking the fork Problem in Privileged DB process

● Specialize an extremely simple VM/snapshotting system in 

the privileged DB process
● No reference counting for physical pages
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Specialized VM Subsystem for Fast Snapshotting

User Page Table

Non-reference-counted Physical PagesGuest Physical

Snapshot Page 
Table 1

Reference-counted Physical PagesHost Physical

Guest Kernel

Host Kernel

Process Page 
Table

Guest Virtual Guest Virtual Address Space

copy

Controlled by DBMS
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Safely Reclaiming Physical Pages with Epochs

● Assumption: snapshot is only allowed to be created from main page table
● A page is reclaimed at epoch boundary when there is no references from page tables.

Epoch #1 Epoch #2

Time

s1

s2

Physical Page P

Main Page table

Epoch #3

P is reclaimed.

P is unlinked.
5 10 11 20 40

Grace Period
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Ready 
Snapshot

Instant Snapshot Creation via Pre-creation

● Asynchronously pre-create and maintain a set of ready-to-go snapshot page tables

● Completely hide the copy latency, making the snapshot creation appear instant

Page Table

Ready 
Snapshot

Synchronize Changes

Snapshot Request
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Implementation

● The snapshot mechanism is implemented (~1K LOC) in a guest kernel called 

libdbos on top of Dune hypervisor

● Physical memory backing and system call proxy are done by the hypervisor

● Evaluated on Redis by replacing fork with this snapshot mechanism
○ Checkpoint process runs in a separate thread

Redis

libdbos

Linux KernelHost Kernel Space

Dune Hypervisor

Proxy syscall with hypercall

Privileged DB Process
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Microbenchmark

● ~20x reduction in snapshot latency 
○ Snapshot 128GB memory in 40ms without parallelization

● Async copy completely hides fork latency if snapshot frequency > page table 

copy time
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Tail Latency of Redis set Query during Checkpoint
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Orthogonal to Linux Bypass Mechanisms

Linux Kernel

Guest Kernel Space

Host Kernel Space

Hypervisor
Proxy syscall with hypercall

Privileged DB Process

Specialized 
Subsystems DPDK/SPDK

IO_URING
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eBPF / XDP



Conclusions

● With privileged kernel-bypass, we can address the mismatch 

problem while
● minimizing impact on kernel security and stability
● providing complete freedom to developers

● preserving ecosystem

● DBMS deserves to be to privileged!

● Contact us at xinjing@mit.edu
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