D, E”Data Systems Group @ MIT

Practical DB-OS Co-design with

Privileged Kernel-Bypass
Xinjing Zhou

with Viktor Leis, Xiangyao Yu, Michael Stonebraker

DBMS on top of OS

DBMS Process

General-purpose OS

Hardware

DB-0OS Interface Mismatch

3
ol iy
S

[|| Dtbse:> Linu dS
Performance =R Il Security
Hardware Control ‘ Resource Efficiency

Are You Sure You Want to Use MMAP in
Your Database Management System?

Andrew Crotty Viktor Leis \ gi Andy Pavlo
(£ Carnegie Mellon University 53 Friedrich-Alexander-Universitat) ::,’ Carnegie Mellon University
v ~ W 4

AlQO is a horrible ad-hoc design, with the main excuse
being "other, less gifted people, made that design,
and we are implementing it for compatibility because

database people - who seldom have any shred of
taste - actually use it".

- Linus Torvalds in 2016

OS on top of DBMS
e The DBOS-project

e Requires a revolution

OS Services

DBMS

Hardware

A Middle-ground: Co-design
e Blurring the boundary of DB and OS

e Some pieces in the OS

e Focus of this talk

DBMS+0OS

Hardware

Co-design Paradigms

DB Process

Modified Linux Kernel:

l_

Hacking/Kernel Module/eBPF

Hardware

l_

DB Process

Kernel Bypass

Hardware

Case Study: Virtual Memory Snapshotting

e Redis uses fork to save process memory as checkpoints for persistence

e fork is blocking and requires threads to be paused to get a consistent

snapshot

Redis p100 Query Latency during Checkpointing

ms)

(
N
o
o

|

100 -

p100.0 Latency

0- I I I I I
1 2 4 8 16 32

Redis Memory Footprint (GiB

fork Bottleneck Analysis

e Linux kernel maintains a per-page reference count for safe page reclamation -

a fundamental design decision to support shared-memory, page cache ...

Virtual Memory Page Table copy
Physical Memory | P1 | P2 | P3 | P4 Update per-page
/reference count
Per-page Ref.Count 2 | 2 | 1 | 2 ~90% cycles due to cache

misses and random accesses

Co-design Paradigms for this Problem

DB Process DB Process DB Process
=
Linux with Specialized VM _ DBMS
Subsystem Kernel Bypass User Bypass: eBPF
I
Hardware Hardware Hardware
e Security/stability issue e Only works for e Limited

® CrowdStrike incident

e Fundamental design

limitation

networking and

storage

programmability

11

Privileged Kernel-Bypass: complete
freedom to specialize subsystems
while minimizing impact on security,
stability, and compatibility

Specialize in an Unconstrained and Safe Place - Virtualized
Environment
e There is a class of hypervisors[1] (Dune) that raises the privilege level of a
Linux process
O Runs in Guest Kernel Space with access to all privileged instructions: paging,
interrupts, rings...

O Preserves process abstraction to reuse host kernel features

Privileged DB
DB process Ad-hoc
Optimizations > process
Ad-h /Abstractions ST
-hoc .
Optimizations | Linux Kernel
/Abstractions inty Kernel

13
[1] Belay, Adam, et al. "Dune: Safe user-level access to privileged {CPU} features." OSDI 12. 2012.

Privileged Kernel-Bypass: Selectively Specialize Data-
Intensive Subsystem

l Privileged DB process .
Specialized /O
[VM/Snapshot System seneeliier } [Stacks

Hypervisor

Snapshotting]
VM subsystem Linux Kernel

Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS

Kernel-Bypass Privileged Kernel-Bypass
DBMS runs in | User space Guest Kernel Space
Specializes Network/Storage Virtual Memory/Scheduler/Interrupt

/Network/Storage

15

Numerous Possibilities

e Fast snapshotting. €

e A "perfect mmap” buffer manager ?

e Faster memory-rewiring for DBMS applications

e UDF sandboxing: UDF in guest userspace and DBMS in guest kernel space.
e Lightweight Preemptive Scheduler

e Faster memory allocation

16

Attacking the fork Problem in Privileged DB process

e Specialize an extremely simple VM/snapshotting system in

the privileged DB process

e No reference counting for physical pages

17

Specialized VM Subsystem for Fast Snapshotting

Guest Virtual Guest Virtual Address Space

..., Controlled by DBMS s i
-

Guest Physical Non-reference-counted Physical Pages

Guest Kernel

Host Kernqg

Host Physical Reference-counted Physical Pages

Safely Reclaiming Physical Pages with Epochs

® Assumption: snapshot is only allowed to be created from main page table

® A page is reclaimed at epoch boundary when there is no references from page tables.

!ﬁe Epoch #1 /Q Epoch #2 ! Epoch #3

v vy v

Physical Page P Grace Period P is reclaimed.
P is unlinked.
5 10 11 20 40

v
—
©

Time

Instant Snapshot Creation via Pre-creation

e Asynchronously pre-create and maintain a set of ready-to-go snapshot page tables

e Completely hide the copy latency, making the snapshot creation appear instant

JcpuE

Page Table

Synchronize Changes

\ 4

Ready
Snapshot

Implementation

e The snapshot mechanism is implemented (~1K LOC) in a guest kernel called

libdbos on top of Dune hypervisor

e Physical memory backing and system call proxy are done by the hypervisor

e Evaluated on Redis by replacing fork with this snapshot mechanism

O Checkpoint process runs in a separate thread Privileged DB Process

Redis

libdbos

i Proxy syscall with hypercall

Dune Hypervisor

21

Host Kernel Space Linux Kernel

Microbenchmark

e ~20x reduction in snapshot latency

O Snapshot 128GB memory in 40ms without parallelization

e Async copy completely hides fork latency if snapshot frequency > page table

—8— Linux Fork —¥— Instant Epoch-Snapshot

—l— Epoch Sapshot
1000

copy time

100
10

1

Fork Latency (ms)

-4
-4
-4
-4
-4
-4

AN
(o8}
=
(@]
W
N

64 128

Memory Footprint (GiB)

22

Tail Latency of Redis set Query during Checkpoint

=@~ Instant Epoch-Snapshot =fll= Linux Fork =¥~ On-Demand-Fork

m

£ 500 -

>

O

C

9

T 100 -

S

§ v

Q 5- o— ® —0— ©
| | | [| |

1 2 4 8 16 32
Redis Memory Footprint (GiB

23

Orthogonal to Linux Bypass Mechanisms

Privileged DB Process

Guest Kernel Space

[Specialized }

Subsystems [UABLIRIHAS

) ‘L Proxy syscall with hypercall
I0_URING J Hypervisor

Li K |
inux Kerne [¢BPF / XDP

Host Kernel Space

24

Conclusions

e With privileged kernel-bypass, we can address the mismatch
problem while

® minimizing impact on kernel security and stability
e providing complete freedom to developers

® preserving ecosystem
e DBMS deserves to be to privileged!

e Contact us at xinjing@mit.edu

25

mailto:xinjing@mit.edu

