
Practical DB-OS Co-design with
Privileged Kernel-Bypass

Xinjing Zhou

with Viktor Leis, Xiangyao Yu, Michael Stonebraker

1

DBMS on top of OS

2

DBMS Process

General-purpose OS

Hardware

DB-OS Interface Mismatch

Performance
Hardware Control

Security
Resource Efficiency

PO
SIX

3

4

AIO is a horrible ad-hoc design, with the main excuse
being "other, less gifted people, made that design,
and we are implementing it for compatibility because
database people - who seldom have any shred of
taste - actually use it".

- Linus Torvalds in 2016

OS on top of DBMS
● The DBOS-project

● Requires a revolution

5

OS Services

DBMS

Hardware

A Middle-ground: Co-design
● Blurring the boundary of DB and OS

● Some pieces in the OS

● Focus of this talk

6

DBMS+OS

Hardware

Co-design Paradigms

Modified Linux Kernel:
Hacking/Kernel Module/eBPF Kernel Bypass

DB Process DB Process

Hardware Hardware

7

Case Study: Virtual Memory Snapshotting

● Redis uses fork to save process memory as checkpoints for persistence

● fork is blocking and requires threads to be paused to get a consistent

snapshot

8
� 	 �
 ��
	

����������� ����������������

�

���

	��
��

��
��
��
��
��

�
���

��

Redis p100 Query Latency during Checkpointing

● Linux kernel maintains a per-page reference count for safe page reclamation –

a fundamental design decision to support shared-memory, page cache …

fork Bottleneck Analysis

P1 P2 P3 P4Physical Memory

Virtual Memory Page Table Page Tablecopy

1 1 1 1Per-page Ref. Count

Update per-page
reference count

~90% cycles due to cache
misses and random accesses

2 2 2
10

Co-design Paradigms for this Problem

Linux with Specialized VM
Subsystem Kernel Bypass

● Security/stability issue
● CrowdStrike incident

● Fundamental design

limitation

● Only works for

networking and

storage

DB Process DB Process

Hardware Hardware

11

User Bypass: eBPF

● Limited

programmability

DB Process

Hardware

DBMS

Privileged Kernel-Bypass: complete
freedom to specialize subsystems
while minimizing impact on security,
stability, and compatibility

12

Specialize in an Unconstrained and Safe Place – Virtualized
Environment

Linux Kernel

DB process

Ad-hoc
Optimizations
/Abstractions Linux Kernel

Privileged DB
processAd-hoc

Optimizations
/Abstractions

13

● There is a class of hypervisors[1] (Dune) that raises the privilege level of a

Linux process
○ Runs in Guest Kernel Space with access to all privileged instructions: paging,

interrupts, rings…

○ Preserves process abstraction to reuse host kernel features

Hypervisor

Privileged Kernel-Bypass: Selectively Specialize Data-
Intensive Subsystem

Linux Kernel

Privileged DB process

14

Hypervisor

Specialized
VM/Snapshot System

VM subsystem
Snapshotting

Scheduler I/O
Stacks

Privileged Kernel-Bypass vs. Kernel-Bypass for DBMS

15

Kernel-Bypass Privileged Kernel-Bypass

DBMS runs in User space Guest Kernel Space

Specializes Network/Storage Virtual Memory/Scheduler/Interrupt
/Network/Storage

Numerous Possibilities

● Fast snapshotting. ç

● A “perfect mmap” buffer manager ?

● Faster memory-rewiring for DBMS applications

● UDF sandboxing: UDF in guest userspace and DBMS in guest kernel space.

● Lightweight Preemptive Scheduler

● Faster memory allocation

● ……

16

Attacking the fork Problem in Privileged DB process

● Specialize an extremely simple VM/snapshotting system in

the privileged DB process
● No reference counting for physical pages

17

Specialized VM Subsystem for Fast Snapshotting

User Page Table

Non-reference-counted Physical PagesGuest Physical

Snapshot Page
Table 1

Reference-counted Physical PagesHost Physical

Guest Kernel

Host Kernel

Process Page
Table

Guest Virtual Guest Virtual Address Space

copy

Controlled by DBMS

18

Safely Reclaiming Physical Pages with Epochs

● Assumption: snapshot is only allowed to be created from main page table
● A page is reclaimed at epoch boundary when there is no references from page tables.

Epoch #1 Epoch #2

Time

s1

s2

Physical Page P

Main Page table

Epoch #3

P is reclaimed.

P is unlinked.
5 10 11 20 40

Grace Period

19

Ready
Snapshot

Instant Snapshot Creation via Pre-creation

● Asynchronously pre-create and maintain a set of ready-to-go snapshot page tables

● Completely hide the copy latency, making the snapshot creation appear instant

Page Table

Ready
Snapshot

Synchronize Changes

Snapshot Request

20

Implementation

● The snapshot mechanism is implemented (~1K LOC) in a guest kernel called

libdbos on top of Dune hypervisor

● Physical memory backing and system call proxy are done by the hypervisor

● Evaluated on Redis by replacing fork with this snapshot mechanism
○ Checkpoint process runs in a separate thread

Redis

libdbos

Linux KernelHost Kernel Space

Dune Hypervisor

Proxy syscall with hypercall

Privileged DB Process

21

Microbenchmark

● ~20x reduction in snapshot latency
○ Snapshot 128GB memory in 40ms without parallelization

● Async copy completely hides fork latency if snapshot frequency > page table

copy time

�
 ��
	 �� �	

���� %����"� ��"������

�

��

���

����

��
 �

��
�"

��
�%

���
!�

���#$��� �
���������!��"

��!"��"�����������!��"

22

Tail Latency of Redis set Query during Checkpoint

23

Orthogonal to Linux Bypass Mechanisms

Linux Kernel

Guest Kernel Space

Host Kernel Space

Hypervisor
Proxy syscall with hypercall

Privileged DB Process

Specialized
Subsystems DPDK/SPDK

IO_URING

24

eBPF / XDP

Conclusions

● With privileged kernel-bypass, we can address the mismatch

problem while
● minimizing impact on kernel security and stability
● providing complete freedom to developers

● preserving ecosystem

● DBMS deserves to be to privileged!

● Contact us at xinjing@mit.edu

25

mailto:xinjing@mit.edu

