We really move YOUR tail for you

 $\bullet \bullet \bullet$

David Lucey - Salesforce HPTS 2024

Networks *weren't* optimizing for you.

- Networks maximized bandwidth and number of talkers
 - Latency improvements were a distant second

Latency *did* improve as 'speeds and feeds' got better
 And most said 'that should be good enough', except....

GPUs are changing that - and you will benefit from it

How the needs changed

Network's Use-case

- High Entropy Many talkers
- Smooth transmission rates the law of large numbers takes over
- Loss Tolerant, as long as it is rare
- Latency 'tolerant', within reason

GPUs' Use-case

- Low Entropy Few talkers
- **Bursty** from zero to wire speed and back
- Loss Intolerant
- Latency Intolerant

How the needs changed

Network's Use-case

- High Entropy Many talkers
- Smooth transmission rates the law of large numbers takes over
- Loss Tolerant, as long as it is rare
- Latency 'tolerant', within reason

- GPU farms are Very Expensive
 - Idle hardware is expensive

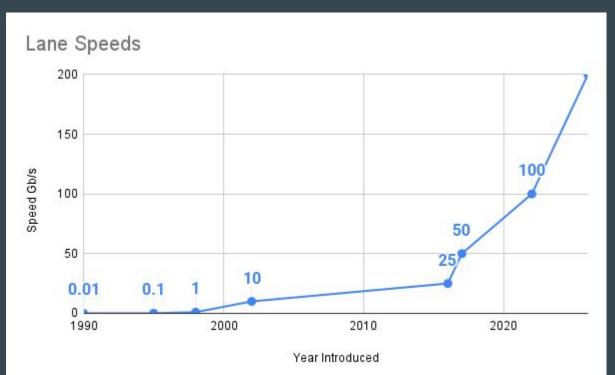
GPUs' Use-case

- Low Entropy Few talkers
- **Bursty** from zero to wire speed and back
- Loss Intolerant
- Latency Intolerant

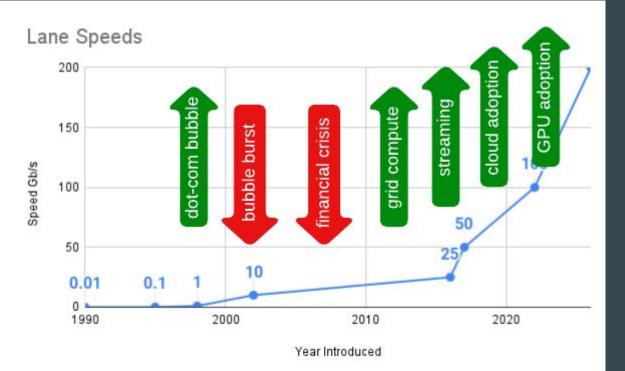
• Training failure is Ridiculously Expensive

Moore's "Law" drove competition and investment

Networking bought in too:


- Faster Speeds
- Fatter Pipes (with Parallel Lanes)
- Faster ASICs

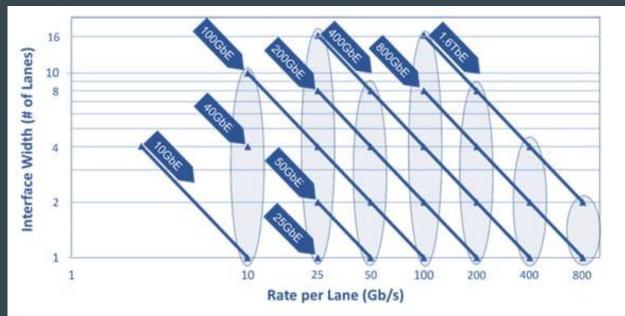
These are the trends


Faster Speeds

Lane Speed	Intro Date
10Mb/s	1990
100Mb/s	1995
1Gb/s	1998
10Gb/s	2002
25Gb/s	2016
50Gb/s	2017
100Gb/s	2022
200Gb/s	2026?

Faster Speeds

Lane Speed	Intro Date
10Mb/s	1990
100Mb/s	1995
1Gb/s	1998
10Gb/s	2002
25Gb/s	2016
50Gb/s	2017
100Gb/s	2022
200Gb/s	2026?



Fatter Pipes

Lane speeds define host NIC adoption

Multi-lane NICs are pricey

Multi-lane is mainly in network links

lmage credit: IEEE SA

Fatter Pipes

Too many lanes inhibit adoption

4 Lanes is the common pattern

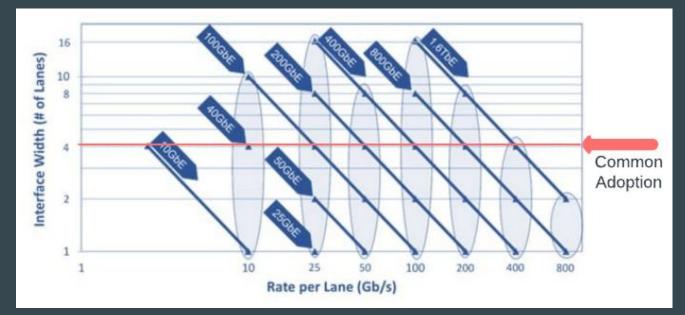


Image credit: IEEE SA

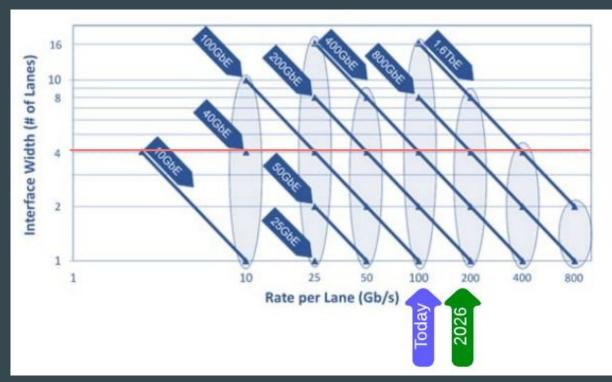
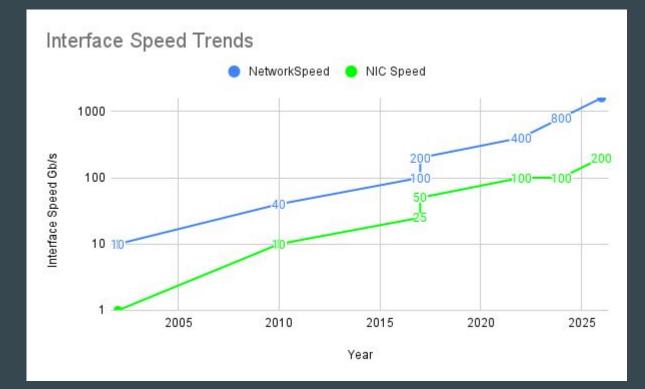
Fatter Pipes

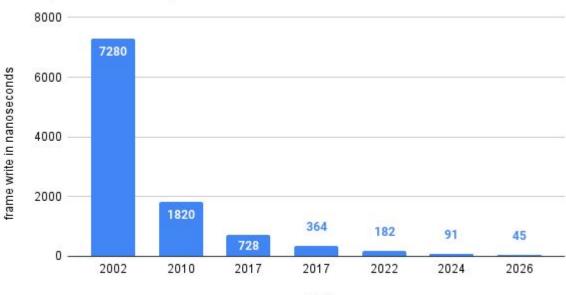
100G NICs readily available

400G network links are common

800G is available, not widely used yet

In 2026, all of that doubles again

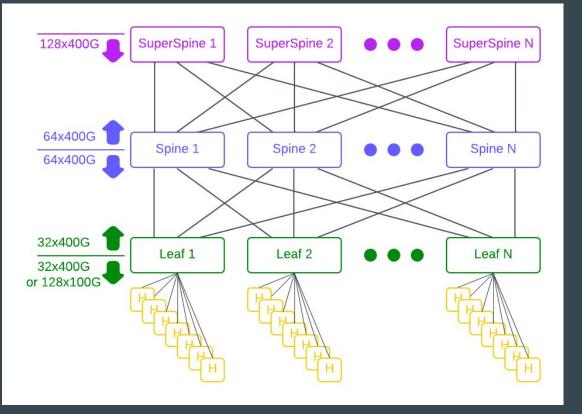

Image credit: IEEE SA

Giving us a clean trend line

Speed	Date	Time to write 9100 Byte frame	Multiplier from 100Gb
10Mb/s	1990	7,280,000 ns	10000
100Mb/s	1995	728,000 ns	1000
1Gb/s	1998	72,800 ns	100
10Gb/s	2002	7,280 ns	10
40Gb/s	2010	1,820 ns	2.5
25Gb/s	2016	2,910 ns	4
100Gb/s	2017	728 ns	1
200Gb/s	2017	364 ns	0.5
400Gbs	2022	182 ns	0.25
800Gbs	2024	91 ns	0.125
1.6Tb/s	2026?	45 ns	0.0625

Transport Write Improvements

Year

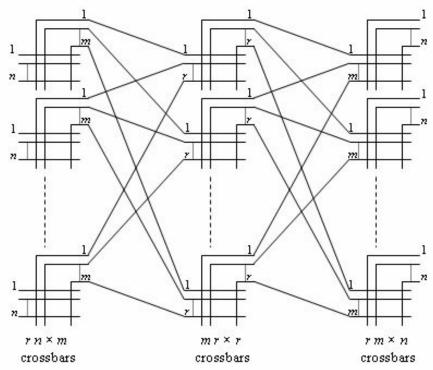

So what does this mean to me?!?

	Transport on a single TOR at 25Gb/s		
TTFB - 736 ns		Using a 9100 byte packet	TTFB: 736 ns
	Source, writing to the fiber - 2912 ns		1112.790115
Propagation - 5 ns			
TOR cut-through - 725 ns			
Propagation- 5 ns			TTLB: 3,647 ns
Ţ.	Destination, writing to the receive buffer - 2912 ns		
		TTLB - 3,647 ns	

So what does this mean to me?!?

	Transport on a single TOR at 25Gb/s		
TTFB - 736 ns	-	Using a 9100 byte packet	TTFB: 736 ns
	Source, writing to the fiber - 2912 ns]	1112.750115
Propagation - 5 ns			
TOR cut-through - 725 ns			
Propagation- 5 ns			TTLB: 3,647 ns
ĺ	Destination, writing to the receive buffer - 2912 ns		
		TTLB - 3,647 ns	
	Transport on a single TOR at 100Gb/s		
TTFB - 736 ns			
	-	Using a 9100 byte packet	TTFB: 736 ns
Source, writing to fiber - 728 ns			
Propagation - 5 ns			
TOR cut-through - 725 ns			TTI D. 1 //2 mg
Propagation - 5 ns			TTLB: 1,463 ns
ĺ	Dest., writing to fiber - 728 ns		
	TTLB - 1,463 ns		

What we *did* do

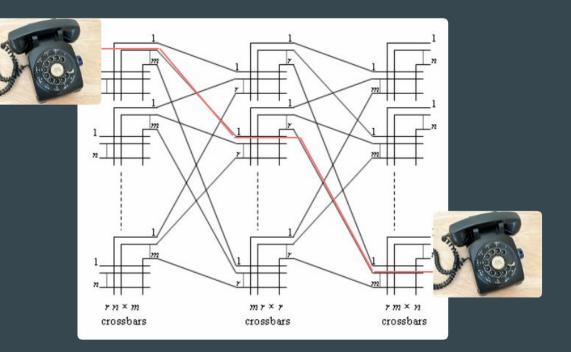

The Clos Network

- Non-oversubscribed
- Minimized buffers (usec not msec)
- Session hashed path selection
- Fan-in is still an issue
- It only approximates a Clos Network

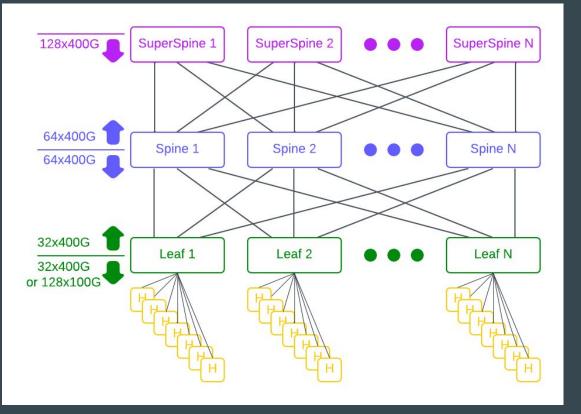
All that is old is new again

In 1953, the Clos Network was designed for phone circuit switching

The secret was deploying enough capacity in the fabric to carry all circuits



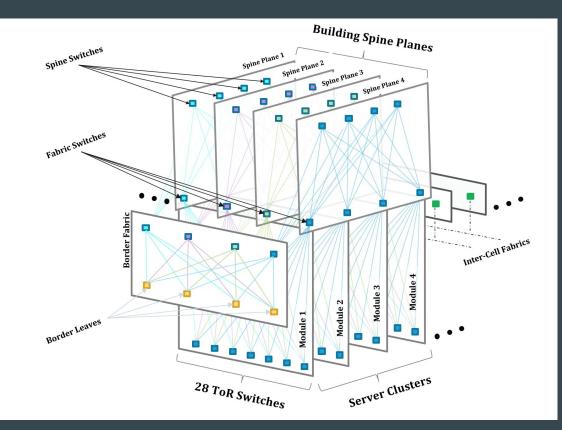
All that is old is new again


No buffering, a circuit was available or engaged

It was able to guarantee behavior

This is what enabled the phone system to offer 99.999%

What we *did* do



The Difference

- Non-oversubscribed
- Not circuit switched
- Giving Probabalistic Guarantees
- Fan-in is still an issue
- Contention and buffering is seen, but infrequent "enough"

What we *did* do

- We maximize fabric size
- A multi-planar network can easily be 80,000+ hosts and 30+MW of power
- All non-oversubscribed
- Size defined by ASIC Radix

I'm still a Trendy Guy

- Radix keeps up with lane speeds
- It doubles radix as fab improves
- Lanes combined for interfaces
- The Radix defines how large a Clos fabric can be built

Chipset	Throughput	Radix	Date Launched
Trident	640G	64x10G	2010
Trident2	1.28T	128x10G	2012
Tomahawk	3.2T	128x25G	2014
Tomahawk2	6.4T	64x100G	2016
Tomahawk3	12.8T	128x100G	2017
Tomahawk4	25.6T	256x100G	2019
Tomahawk5	51.2T	512x100G	2023
Jericho3	28.8T	288x100G	2025?
Ramon3	51.2T	512x100G	2025?

Moving YOUR tail

• Now, think back to the waterfall timing in a single TOR

Uncontested forwarding time on a single TOR at 25Gb/s

TTFB - 736 ns

Using a 9100 byte packet

	Source, writing to the fiber - 2912 ns	
Transport to the TOR - 5 ns		
TOR cut-through - 725 ns		
Transport to the Dest 5 ns		
	Destination, writing to the receive buffer - 2912 ns	
-		

TTLB - 3,647 ns

Moving YOUR tail

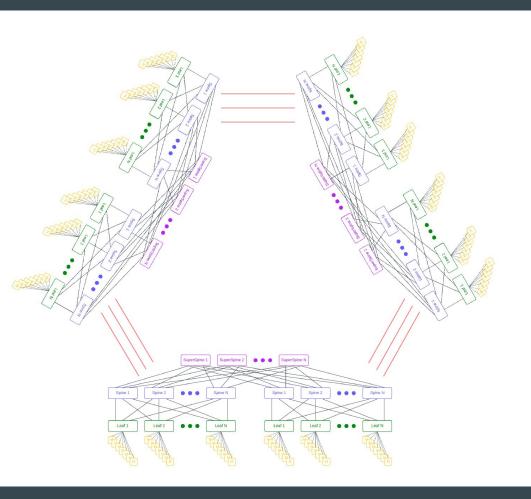
This eye chart is showing the same packet crossing a large Clos network
Important bits: TTFB - 5.64 usec, TTLB - 8.55 usec

Uncontested forwarding time across a Clos Fabric at 25Gb/s		
TTFB - 5,636 ns		Using a 9100 byte packet
Source, writing to the fiber - 2912 ns		
TOR cut-through - 725 ns Fiber Transport time - 500 ns Spine cut-through - 725 ns	Fiber Transport time - 500 ns SuperSpine cut-through - 725 ns Fiber Transport time - 500 ns Spine cut-through - 725 ns Fiber Transport ToR cut-throug Transport to the	gh - 725 ns

Moving YOUR tail

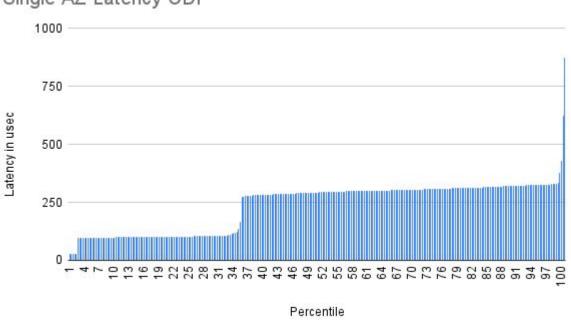
- You're still sharing the Network

 ASICs hate buffering too


 Switches have ~53 usec of buffer

 Worst case across a Rack 53 usec
 Worst case across a Clos 274 usec
- Absolute worst case

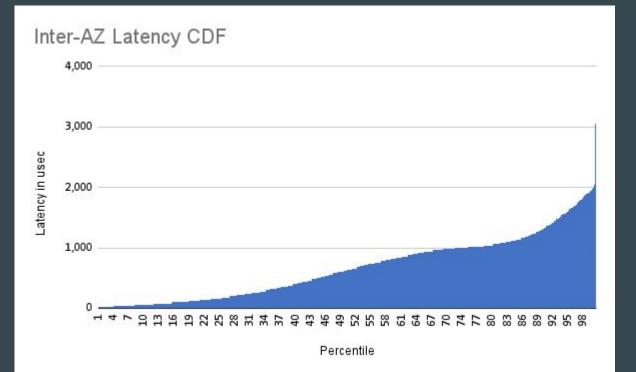
A Note about Public Clouds


 An AZ is one or more Clos networks

 Inter-Clos capacity is demand-signaled for augmentation

A Note about Public Clouds

- We infer intimacy as categories of latency
- In this test we observed
 - Same rack ~30 usec
 - Single clos ~100 usec
 - Inter-clos ~300 usec
- Through a Hypervisor and SDN



Single AZ Latency CDF

A Note about Public Clouds

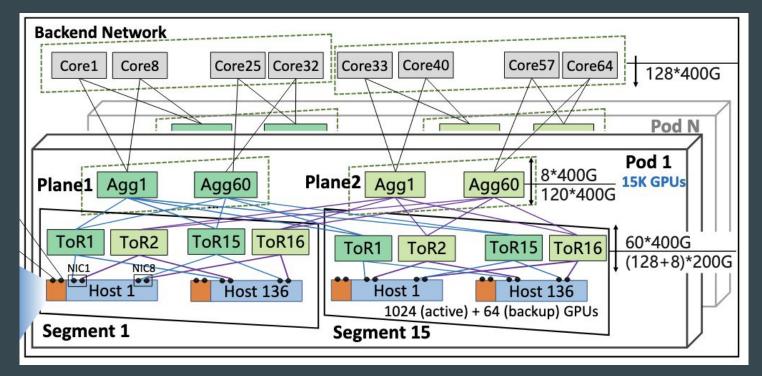
• Crossing AZs is much less intimate

• It also has far less consistency

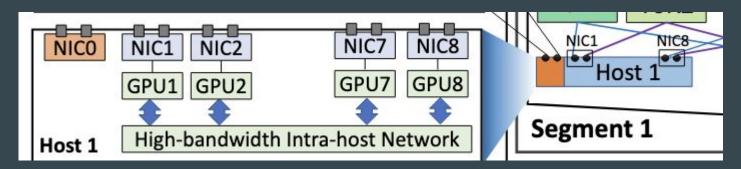
What we are doing about it now

In the last month:

- Azure announced they're building 24k GPU fabrics (Network@Scale'24)
- Meta announced their 100k GPU fabrics (Network@Scale'24)
- Alibaba published their <u>GPU Network Design</u> (SIGCOMM'24)

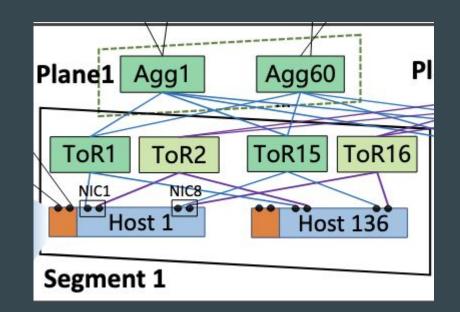

All focusing on fabric 'intimacy' and lack of contention

We solve the problem with the tool we have - Throwing bandwidth at it.


In a dedicated GPU Network

1,024 GPUs per 'segment'

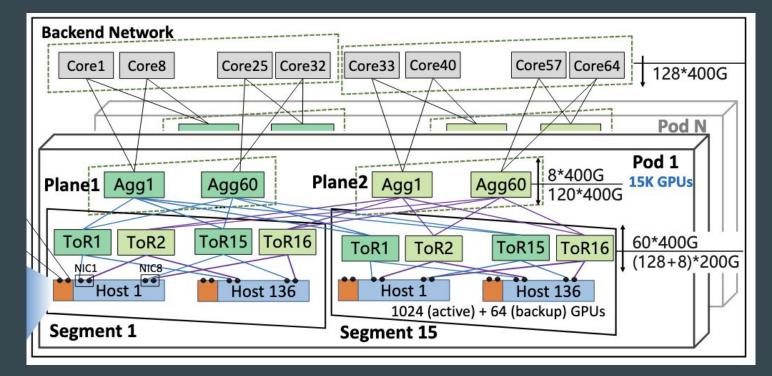
15k GPUs per 'pod'



- Each GPU gets its own 400G NIC
- Split to 2x200G interfaces to different switches
- 8:1 outnumbering the front-end interfaces.

Credit: Kun Qian, et. al. SIGGCOMM'24

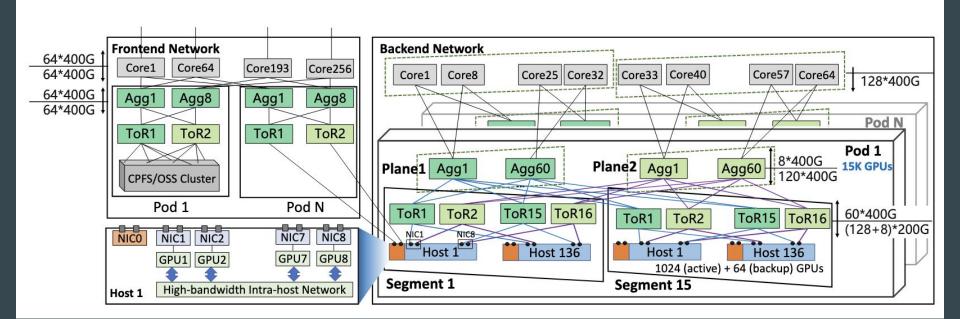
- Striping across many TORs increases paths
- Without session entropy, we increase the interfaces to avoid conflicts


Within a segment, no oversubscription

• 410 Tb per segment

Between segments, slight oversub. (16:15)

• 5.76 Pb per pod


Between pods, heavy oversub. (8:1)

ACM SIGCOMM '24, August 4-8, 2024, Sydney, NSW, Australia

What are we doing about GPUs now?

Putting it all together, the Clos we'd normally be talking about is a footnote at the top right.

Kun Qian et a

What will we do about it tomorrow?

Hardware Design changes - E.g. Jericho3/Ramon3 from Broadcom

- 'AI focused' ASICs still suffer from the 'elephant flow' problem
- Newer chips will determine path in hardware and reserve bandwidth
 - Giving predictable latency and order
 - Using Time-Division Multiplexing (TDM)
- Not a new idea, but it is new to the LAN
 - Circuit Reservation was in mechanical phone switches, ATM-SMDS, and MPLS-RSVP.

What will we do about it tomorrow?

Standards changes - E.g. Ultra Ethernet Consortium

- UEC has a number of ideas, but the exciting one is a return to packet-based load balancing
 - Session-based load balancing has dominated for >20 years to preserve packet order
 - Reassemble before the kernel to preserve packet order
 - This will rethink the concept of 'flows' and make RoCE smoke!
- Packet spraying across all paths, combined with forward error correction, and re-assembly prior to the destination application is a game changer.

Where this will put us... 5 Years from Now

- We will squander the abundant (bandwidth) to save the precious (latency)
- Critical communications will make reservations across the fabric
 - Return to circuit switching
 - Locking in a latency guarantee and minimizing jitter
- Other sessions will spray packets across all paths to scavenge the remaining bandwidth

• ...and speeds and feeds will be faster too...

Takeaways

- Networks got good at making huge non-oversubscribed fabrics
 - But these were probabilistic guarantees
 - Crossing fabrics is still very oversubscribed

Takeaways

- Networks got good at making huge non-oversubscribed fabrics
 - But these were probabilistic guarantees
 - Crossing fabrics is still very oversubscribed

• GPUs shifted how we think about Networks

- \circ \quad Latency and Jitter are in the spotlight to keep GPUs fed
- \circ Intimacy between systems is critical
- All latency dependent systems will benefit

Takeaways

- Networks got good at making huge non-oversubscribed fabrics
 - But these were probabilistic guarantees
 - Crossing fabrics is still very oversubscribed

• GPUs shifted how we think about Networks

- \circ ~ Latency and Jitter are now in the spotlight to keep GPUs fed
- Intimacy between systems is critical
- All latency dependent systems will benefit
- Innovation will squander the abundant (bandwidth) to preserve the precious (latency)
 - Critical Communications will make path and bandwidth reservations to guarantee latency and jitter
 - Other sessions will spray packets across all paths to scavenge the remaining bandwidth

Want to talk networks?

Reach out: dlucey@salesforce.com