
Peter Boncz
CWI & MotherDuck)

60fps cloud databases

https://idl.uw.edu/mosaic/examples/athletes.html#olympic-athletes

https://idl.uw.edu/mosaic/examples/flights-200k.html

https://docs.google.com/file/d/1V9KNuO11sPJ0ODrciyI_mNWoyeKpdWPO/preview

DuckDB: embedded analytics

● Created by Hannes Mühleisen and Mark Raasveldt
● Idea: analytical SQL system as a linkable library
● From research on data systems support for data science:

○ why don’t data scientists use database systems?
⇒ make database technology better suited for data science
 Embedded databases, zero-copy dataframe access, ease-of-use

● Active discord, blog, starting events, traction:
○ >22K github stars, >10M downloads/month (4x increases YoYoYoY)
○ DuckDB Labs spin-off (+MotherDuck)

A great burger is
more than just

good beef!

MAKING
ANALYTICS

EASY

Easy to install / no dependencies
Run anywhere (including the browser)
Query dataframes directly
Friendliest SQL syntax in the world

DuckDB - overview

Mark Raasveldt (April 2023)
CMU DUCKDB TALK

DuckDB - Extensions

Mark Raasveldt (April 2023)
CMU DUCKDB TALK

DuckDB - WASM

Mark Raasveldt (April 2023)
CMU DUCKDB TALK

What is MotherDuck?

A serverless DuckDB platform for low-cost, low-latency
analytics that combines the power of your laptop and the

modern cloud.

What is MotherDuck?

A serverless DuckDB platform for low-cost, low-latency
analytics that combines the power of your laptop and the

modern cloud.

With Dual Query Processing!

What is Dual (Hybrid) Query Processing?

● Every client has a DuckDB
○ DuckDB is an embedded DBMS
○ So.. JDBC driver links DuckDB into your application

● Every DuckDB client can contact MotherDuck
○ install motherduck;

○ load motherduck;

● Local Databases and Remote Databases
○ Can be queried as one
○ Some execution local, some in the cloud

MotherDuck Architecture

Client Extension

Why Dual Query Processing?

● Applications enabled by client-side queries
○ low latency: dashboards, interactive query formulation, spatial compute
○ not always connected applications (edge)
○ secure applications: decrypt on client (monomi)

● Reduce Cloud Compute
○ Leverage local compute resources

● Moving data science from laptop to cloud
○ Share data, bring pipelines in production

● Run PostgreSQL analytics on DuckDB (pg_duckdb)
○ ..backed by MotherDuck cloud storage

MotherDuck Architecture

Dual Query Processing

local (client)

remote (duckling)

Extension

DuckDB
Parse Bind Optimize Execute

Bind Optimize Execute

Execute

results

Parse

Bind

Dual Query Processing

local (client)

remote (duckling)

Extension

DuckDB
Parse Bind Optimize Execute

Bind Optimize Execute

Execute

results

Parse

FROM local_db.tab t SELECT sum(t.c)

Bind

“recognize tables &
where they
come from”

Dual Query Processing

local (client)

remote (duckling)

Extension

DuckDB
Parse Bind Optimize Execute

Bind Optimize Execute

Execute

results

Parse

FROM remote_db.tab t SELECT sum(t.c)

Bind

“recognize tables &
where they
come from”

Dual Query Processing

local (client)

remote (duckling)

Extension

DuckDB
Parse Bind Optimize Execute

Bind Optimize Execute

Execute

results

Parse

FROM remote_db.tab t SELECT sum(t.c)

Virtual catalog

Bind

“recognize tables &
where they
come from”

Query Pipelines

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

Query Pipelines

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

aggregate

join

joinscan(t1)

scan(t2) scan(t3)

Query Pipelines

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

aggregate

join

joinscan(t1)

scan(t2) scan(t3)

Dual Query Processing

local (client)

remote (duckling)

Extension

DuckDB
Parse Bind Optimize Execute

Bind Optimize Execute

Execute

results

Parse

“decide which pipeline to run where”

Bind

Local-Remote Planning

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

aggregate

join

joinscan(t1)

scan(t2) scan(t3)

Local-Remote Planning

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

aggregate

join

joinscan(t1)

scan(t2) scan(t3)

local

remote

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

agnostic

Local-Remote Planning

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

aggregate

join

joinscan(t1)

scan(t2) scan(t3)

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

Bridge Operators

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

aggregate

join

joinscan(t1)

scan(t2) scan(t3)

SELECT count(*) FROM t1 JOIN t2 ON t1.a = t2.a JOIN t3 ON t3.b = t2.b

bridge operator

MotherDuck Architecture

 Storage Extension

DuckDB Storage

Commit() => Write Ahead Log => Checkpoint() => Database File

 DuckDB

WAL Database File
many small appends

random writes

MotherDuck Storage

Mapping the same database format on cloud resources..

 DuckDB

WAL Database File
many small appends

random writes

WAL Database File

FUSE

 S3
EFS

Differential Storage

Niclas Haderer
MotherDuck)

Declarative Caching

34

What Queries Happen Behind the Scene?

35

Opportunity #1: allow earlier cache reads

Opportunity #1: allow earlier cache reads

What if the query result is large?

38

What Queries Happen Behind the Scene?

39

Opportunity #2: allow access to partial caches

40

Introducing.. Cached Results

Result Mechanics

Decision making by the

query optimizer!

Is the query covered by the

(still growing) cached

RESULT?

Some Performance Results

Streaming API: no caching

CTAS: current approach

RESULT: new approach

Future Work

44

Future Work

45

Future Work

46

Hamilton Ulmer
MotherDuck)

Instant Preview Mode

https://docs.google.com/file/d/1NZpSSsHb6mmbRVJVWZiBJLrfRGZDM6dz/preview

Conclusion

Hybrid Execution in MotherDuck

● Move some processing to the client
○ Lower cloud bills
○ Lower latencies (“60 fps”)
○ Exploit client-side data

● Declarative Result Caching
○ Fast access to the first tuple
○ Can be done both on client- and server-side (small resp. big caches)

● Instant Preview Mode
○ Making query formulation easier
○ Direct Feedback + AI
○ Backed by “join synopses”

Thank You!

