
Consistency in Motion
Chris Douglas

Presenter Notes
Presentation Notes
I guess I’ll close out the last session we’ll ever do on HTAP, now that Tianyu has demonstrated its irrelevance.
Since I already made the slides, let’s do it.

<intro> PhD student at UC Berkeley advised by Joe Hellerstein
You know how you submit an abstract to a conference soliciting “controversial” ideas, so you write up the wildest, most impractical thing you’re working on?
<click>
This is work in very early stages, a “concept of a plan” as they say.
I’m very interested in feedback and related work/ideas

Consistency in Motion | HPTS 2024

A Familiar Problem

• Mixed workload
o Small updates
o Big analytic queries
o Serializability

Consistency in Motion | HPTS 2024

Concrete Scenario
BEGIN;

END;

BEGIN;

END;

T1 T2

UPDATE Inventory I
SET price = '700.99'
WHERE I.product_id

= 1234567;

UPDATE Inventory I
SET price = price * 1.02
WHERE I.supplier = Apple

Presenter Notes
Presentation Notes
Two transactions, both alike in dignity: a short transaction T1 doing a point update and a long-running T2 raising the price of every matching product

Consistency in Motion | HPTS 2024

Storage Manager
BEGIN; BEGIN;

T1 T2

R1(x);
W1(y);

R2(x);
R2(y);
…
W2(x);
W2(y);
…

END; END;

Presenter Notes
Presentation Notes
This is what the transaction/storage system sees, a sequence of reads and writes

Consistency in Motion | HPTS 2024

Storage Manager
BEGIN; BEGIN;

T1 T2

R1(x0);
W1(y1);

R2(x0);
R2(y0);
…
W2(x2);
W2(y2);
…

END; END;

Presenter Notes
Presentation Notes
Concurrency control technique needs to preclude non-serializable histories for these reads and writes

Clearly not a serializable history

Consistency in Motion | HPTS 2024

Storage Manager
BEGIN; BEGIN;

T1 T2

R1(x0);

W1(y1);

R2(x0);
R2(y0);
…
W2(x2);
W2(y2);
…

END; END;

Presenter Notes
Presentation Notes
- TO: T2 reads y before T1 writes, abort + retry

Consistency in Motion | HPTS 2024

Storage Manager
BEGIN; BEGIN;

T1 T2

R1(x2);
W1(y1);

R2(x0);
R2(y0);
…
W2(x2);
W2(y2);
…

END; END;

Presenter Notes
Presentation Notes
- 2PL, if T2 has already written x, T1 may need to wait a long time for it to finish, so it can read its output

Consistency in Motion | HPTS 2024

(╯°□°)╯︵┻━┻

BEGIN; BEGIN;

T1 T2

R1(x0);
W1(y1);

END; END;

W-1(y0)
W1(y1)

R2(x0);
R2(y0);
…
W2(x2);
W2(y2);
…

Presenter Notes
Presentation Notes
I don’t like this order. I want T1 to go first, even if T2 has done some conflicting work

We can abort and restart T2, but the impact of T1 on T2 is small

I want to somehow undo the effect of y0 on T2 and redo the transaction with y1, written by T1

Consistency in Motion | HPTS 2024

(╯°□°)╯︵┻━┻

BEGIN; BEGIN;

T1 T2

R1(x0);
W1(y1);

END; END;

W-1(y0)
W1(y1)

R2(x0);
R2(y1);
…
W2(x2);
W2(y2);
…

Presenter Notes
Presentation Notes
If T2 can be patched, then T1 can commit before T2 in a serializable schedule

And before either transaction has committed, this is fair game

Consistency in Motion | HPTS 2024

Can we do this in general?

1. Invertible writes
a. Is this possible?
b. How do we track state?

2. Fix all the reads, cheaply
a. Is this possible?
b. Track state and update incrementally?

ℤ-sets

Materialized view
maintenance

Presenter Notes
Presentation Notes
Can we do this?

We needed two capabilities to reorder T1 before T2

We needed to somehow unwrite the value read by T2 and replace it with another.
We’re going to build on Z-sets, a generalization of multiset semantics

And we didn’t want to pay too much for that. T1 had only a small effect on T2, so we shouldn’t have to re-execute the whole transaction to incorporate it
We’re going to use some recent results for streaming, incremental maintenance of materialized views to make that efficient

Consistency in Motion | HPTS 2024

Agenda

• Motivation for reordering
• Inverse of a write

– ℤ-sets (🗎🗎 Green, et al., 2009)
• Incremental transaction maintenance

– IVM: Differential Dataflow, DBSP (🗎🗎 Budiu, et al. 2022)
• Consistency in Motion: Reordering transactions

– Dirty reads, aborts, etc.

Presenter Notes
Presentation Notes
First, we need to have an inverse of a transaction: Z-sets

Then we need incremental versions of transactions, not just queries
Incremental maintenance of materialized views, DBSP

Finally, we’ll assemble these parts into an algebra for reordering, or for now, hints that it’s possible.

Consistency in Motion | HPTS 2024

Reordering Transactions in Flight

Workload Heterogeneity
(HTAP)

Priority Deadlines

Presenter Notes
Presentation Notes
Transaction reordering is an important problem.
Not only heterogeneous workloads (high txn latency variance, wasted work from aborts)
priority: long-running, low priority tasks may take a long time to complete, require hacks like increasing priority after restarting
deadlines: producing a result at a particular time requires careful, but often heuristic admission control and preemption of other transactions that might cause a deadline miss

Consistency in Motion | HPTS 2024

Agenda

• Motivation for reordering
• Inverse of a write

– ℤ-sets (🗎🗎 Green, et al., 2009)
• Incremental transaction maintenance

– IVM: Differential Dataflow, DBSP (🗎🗎 Budiu, et al. 2022)
• Consistency in Motion: Reordering transactions

– Dirty reads, aborts, etc.

Presenter Notes
Presentation Notes
We have some plausible reasons to reorder things…

What does it mean to invert a write and how do we do it?

Consistency in Motion | HPTS 2024

ℤ-sets

Simple: weights on tuples
A ℤ-set is a function 𝑟𝑟: 𝜏𝜏 → ℤ
• 𝜏𝜏 the type of tuple
• finite support (finite rows)
Sets, Bags, sets of updates
- Positive weight: row(s) added
- Negative weight: row(s) deleted
- Zero: row not present

A B Weight

40 10 1

50 20 -1

20 10 2

𝑅𝑅

Presenter Notes
Presentation Notes
Z-sets (also Z-relations) are simple. They’re just weights on tuples.
With sets, all these weights are 1
With bags, these weights are natural numbers (positive integers, representing the number of duplicates)
To represent changes, these weights include ALL integers, including negative numbers.

We can represent sets of updates to a relation, where positive weights are adding rows, negative weights are deleting them, and if they’re zero they don’t exist

Consistency in Motion | HPTS 2024

ℤ-sets

(ℤ, +, 0) is a commutative group
+ is associative, commutative
0 an identity element
inverse: ∀𝑒𝑒 ∈ ℤ,∃𝑒𝑒−1 ∶ 𝑒𝑒 + 𝑒𝑒−1 = 0

A B Weight

40 10 1

50 20 -1

20 10 2

𝑅𝑅
“Indifferent to ordering”

Presenter Notes
Presentation Notes
This is what lets us make commutative groups (Abelian groups) from tuples.

Key idea is to be indifferent to ordering, so we can delete stuff before we insert it

We’re going to make use of this commutativity presently

Consistency in Motion | HPTS 2024

ℤ-Relations

• Every table has a (hidden) “weight” column
• Duplicates handled via the weight column
• Aggregates/outputs handled in the obvious way

– Well-worn territory

Consistency in Motion | HPTS 2024

Write and Write-1 in ℤ-sets

• Write(told, tnew):
o decrement(told)
o increment(tnew)

• Write-1(told, tnew):
o decrement(tnew)
o increment(told)

A B Weight

40 10 1

50 20 1

20 10 2

𝑅𝑅
A B Weight

40 10 1

50 30 1

20 10 2

𝑅𝑅
A B Weight

50 20 -1

50 30 1

Δ𝑅𝑅

+ =

Consistency in Motion | HPTS 2024

Write and Write-1 in ℤ-sets

• Write(told, tnew):
o decrement(told)
o increment(tnew)

• Write-1(told, tnew):
o decrement(tnew)
o increment(told)

A B Weight

40 10 1

50 30 1

20 10 2

𝑅𝑅
A B Weight

40 10 1

50 20 1

20 10 2

𝑅𝑅
A B Weight

50 20

50 30

Δ𝑅𝑅

+ =

• No blind writes
• Extra metadata

-1

1

Presenter Notes
Presentation Notes
Can’t do blind writes, or they would annihilate later inserts
Carrying some metadata
but these are counts, compress well, put them in a column…

Can invert arbitrary writes

Consistency in Motion | HPTS 2024

Read in ℤ-sets

• Read(t):
o {t1, … tn} if weight(t) = n > 0
o null if weight(t) <= 0

A B Weight

40 10 1

50 20 -1

20 10 2

𝑅𝑅
A B Weight

40 10 1

20 10 2

𝑅𝑅

Presenter Notes
Presentation Notes
Reads are simple; only positive integers exist, and we don’t need to record weights that are zero

Works out in a wash, see me for details

Consistency in Motion | HPTS 2024

Agenda

• Motivation for reordering
• Inverse of a write

– ℤ-sets (🗎🗎 Green, et al., 2009)
• Incremental transaction maintenance

– IVM: Differential Dataflow, DBSP (🗎🗎 Budiu, et al. 2022)
• Consistency in Motion: Reordering transactions

– Dirty reads, aborts, etc.

Presenter Notes
Presentation Notes
OK, we can make updates commute, but we need machinery to compute with them

For this, we’re going to lean on incremental view maintenance, specifically DBSP

Consistency in Motion | HPTS 2024

DBSP

• Succinct (4 operator) streaming language
• Inputs and outputs are deltas (composable)
• Algorithm to convert arbitrary DBSP programs (query

plans) to incremental DBSP programs
• Works over any commutative group (ℤ-sets)

𝑄𝑄𝑇𝑇2
Δ Δ𝑇𝑇23 Δ𝑇𝑇22 Δ𝑇𝑇21 Δ𝑇𝑇20

state

Δ𝑇𝑇13 Δ𝑇𝑇12 Δ𝑇𝑇11 Δ𝑇𝑇10 𝐼𝐼

Presenter Notes
Presentation Notes
Succinct streaming language, inspired by signal processing (don’t ask me how)
DBSP programs are dataflows, operators over a stream of changes.

Incremental DBSP programs consume streams of changes and emit streams of changes.
already great for CDC use cases like alerting/reporting
but it also means DBSP programs (query plans) are composable
if you were to integrate the stream of output deltas, you would get the query result up to that prefix in the stream

Log entries: DBSP uses a bunch of language from calculus, label this box integration:

Think of it as recovery; materialize the output of this query up to some prefix of a log of changes

And this is the trick: DBSP queries are designed to run on unbounded streams, forever.

Consistency in Motion | HPTS 2024

DBSP

• Succinct (4 operator) streaming language
• Inputs and outputs are deltas (composable)
• Algorithm to convert arbitrary DBSP programs (query

plans) to incremental DBSP programs
• Works over any commutative group (ℤ-sets)

𝑄𝑄𝑇𝑇2
Δ Δ𝑇𝑇23Δ𝑇𝑇22Δ𝑇𝑇21Δ𝑇𝑇20

state

𝑄𝑄𝑇𝑇2Which inputs will produce a
serializable execution of 𝑄𝑄𝑇𝑇2

Δ ?

Presenter Notes
Presentation Notes
When the input stops and the output is integrated, this is the query result

Next, we’re going to step through an example of incremental maintenance, but while I do that, keep our goal in mind:

we want to manipulate the inputs to this incremental query so this query result reflects a serializable execution of T2

Consistency in Motion | HPTS 2024

DBSP Capabilities

• Streaming view maintenance system
– Relational (𝜎𝜎,𝜋𝜋,⋈,∪,−)
– Nested Relations (group-by, unnest, flatmap)
– Aggregation
– Streaming joins, window aggregates
– Recursion ([non-]monotone, graph)
– Stratified negation

SQL

Datalog

Presenter Notes
Presentation Notes

We’re only considering small examples, but complex SQL queries can be translated into DBSP programs and automatically incrementalized by the DBSP compiler

Can generate a DBSP program from SQL (DBSP calls them circuits) (IE A QUERY PLAN), then create an incremental version of that query plan

Consistency in Motion | HPTS 2024

Example: DBSP + Writes

• T1: SELECT * FROM S INNER JOIN R WHERE A >= 30;
• T2: UPDATE Table SET B = 10 WHERE A = 50;

• Assume T1 ran before T2; neither has committed

Presenter Notes
Presentation Notes
So let’s do that. Tightening our inventory example, let’s look at a simple join and a conflicting point update

So what does a query plan look like?

Consistency in Motion | HPTS 2024

DBSP: Join

A B Weight

40 10 1

50 20 2

20 30 1

𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)

𝑅𝑅

𝑆𝑆
B C Weight

20 x 1

30 y 2

A B C Weight

50 20 x 2

𝜎𝜎𝐴𝐴≥30 𝐼𝐼

𝐼𝐼

𝑧𝑧−1

𝑧𝑧−1

×

×

+×

Δ𝑅𝑅 × 𝑆𝑆

𝑅𝑅 × Δ𝑆𝑆

Δ𝑅𝑅 × Δ𝑆𝑆

Δ 𝑅𝑅 × 𝑆𝑆 =
𝑅𝑅 × Δ𝑆𝑆 +
Δ𝑅𝑅 × 𝑆𝑆 +
Δ𝑅𝑅 × Δ𝑆𝑆

Δ(𝑅𝑅 × 𝑆𝑆)

Presenter Notes
Presentation Notes
So this is horrifying. However!

Doing something very familiar, incremental maintenance
What’s already in R joined with changes to S
changes to R joined with S
changes joined with themselves
These are integrating the set of changes seen up to tick i, delaying them until tick i+1, and joining the result.
This + operator is from our Z-set! It's the same as relational union, it just sums weights.

this is like a symmetric hash join, but every tuple includes an integer weight

Consistency in Motion | HPTS 2024

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

A B Weight

Δ𝑄𝑄𝑇𝑇2

B C Weight

A B Weight

A B C WeightA B Weight

40 10 1

50 20 2

20 30 1

Presenter Notes
Presentation Notes
Stuffing those details into this operator, let’s do an incremental join

Assume our query has a snapshot of R and S
For simplicity, we’re only going to change R in this example, but as we saw we could change both R and S
<c>This arrow is our read cursor scanning the snapshot of R

for ease of exposition we’ll scan S first

Consistency in Motion | HPTS 2024

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

A B Weight B C Weight

20 x 1

30 y 2

Δ𝑄𝑄𝑇𝑇2
A B Weight

A B C Weight

(40, 10, 1)

A B Weight

40 10 1

50 20 2

20 30 1

A B Weight

40 10 1

A B Weight

50 20 -1

50 10 1

Consistency in Motion | HPTS 2024

(50, 20,−1)
(50, 10, 1)

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

B C Weight

20 x 1

30 y 2

Δ𝑄𝑄𝑇𝑇2

A B C Weight

(40, 10, 1)

A B Weight

40 10 1

50 20 2

20 30 1

A B Weight

40 10 1

A B Weight

50 20 -1

50 10 1

A B Weight

40 10 1

50 20 -1

50 10 1

A B C Weight

50 20 x -1

Presenter Notes
Presentation Notes
again, streaming hash join, we could stream S and changes to S concurrently

Consistency in Motion | HPTS 2024

(50, 20, 2)

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

B C Weight

20 x 1

30 y 2

Δ𝑄𝑄𝑇𝑇2
(40, 10, 1)

A B Weight

40 10 1

50 20 2

20 30 1A B Weight

50 20 -1

50 10 1

A B Weight

40 10 1

50 20

50 10 1

A B C Weight

50 20 x

-11

-11

Presenter Notes
Presentation Notes
Next tuple (50, 20, 2)
just need to update this weight

Consistency in Motion | HPTS 2024

(20, 30, 1)

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

B C Weight

20 x 1

30 y 2

Δ𝑄𝑄𝑇𝑇2
(40, 10, 1)

A B Weight

40 10 1

50 20 2

20 30 1A B Weight

50 20 -1

50 10 1

20 30 -1

50 30 1 A B Weight

40 10 1

50 20 1

50 10 1

50 30 1

A B C Weight

50 20 x 1

50 30 y 1

Presenter Notes
Presentation Notes
Running out of space, but so far: every tuple has passed through our filter, which has no state (select/project are “linear” operators)

The filter will drop both the insert from the R snapshot and the delete. Neither affects the evaluation of the query
Only the new value that passes through the filter is joined with S and appears in the output

Consistency in Motion | HPTS 2024

Agenda

• Motivation for reordering
• Inverse of a write

– ℤ-sets (🗎🗎 Green, et al., 2009)
• Incremental transaction maintenance

– IVM: Differential Dataflow, DBSP (🗎🗎 Budiu, et al. 2022)
• Reordering transactions

– Dirty reads, aborts, etc.

Presenter Notes
Presentation Notes
OK. Incremental evaluation is cool, but we want to reorder transactions.

I’ve claimed we can reorder these, so… let’s do it

Consistency in Motion | HPTS 2024

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

B C Weight

20 x 1

30 y 2

Δ𝑄𝑄𝑇𝑇2
(40, 10, 1)

A B Weight

40 10 1

50 20 2

20 30 1A B Weight

50 20 -1

50 10 1

20 30 -1

50 30 1 A B Weight

40 10 1

50 20 1

50 10 1

50 30 1

A B C Weight

50 20 x 1

50 30 y 1

Presenter Notes
Presentation Notes
So we want to undo the effect of T2 on T1
Maybe T2 aborted, maybe T1 is ready to commit but T2 is contemplating the universe… whatever

To undo the effect of T2, let’s invert the weights of the tuples we consumed

Consistency in Motion | HPTS 2024

(50, 20, 1)
(50, 10,−1)
(50, 30,−1)

DBSP: Join
𝑄𝑄 = 𝜎𝜎𝐴𝐴≥30(𝑅𝑅 ⋈ 𝑆𝑆)snapshot(𝑅𝑅) snapshot(𝑆𝑆)

B C Weight

20 x 1

30 y 2

𝜎𝜎𝐴𝐴≥30 ⋈Δ

B C Weight

20 x 1

30 y 2

Δ𝑄𝑄𝑇𝑇2
(40, 10, 1)

A B Weight

40 10 1

50 20 2

20 30 1A B Weight

50 20 1

50 10 -1

20 30 1

50 30 -1 A B Weight

40 10 1

50 20 1

50 10 1

50 30 1

A B C Weight

50 20 x 1

50 30 y 1

A B Weight

40 10 1

50 20 2

50 10 0

50 30 0

A B C Weight

50 20 x 2

50 30 y 0

Presenter Notes
Presentation Notes
And we’re done.

The result matches the result of the query over the snapshot.
We’ve removed the impact of T2 on T1, and if it’s moved after T1 it can consume the output.

Note also that while we’re integrating (recovering) the result of the incremental join here, we could also stitch this directly to other transactions.

So… what could possibly go wrong?

Consistency in Motion | HPTS 2024

Skepticism

• Delete anomalies
– 𝑇𝑇1, 𝑇𝑇2 read the same snapshot, delete the same record

• Bookkeeping overheads
– No blind writes
– 𝑇𝑇1, 𝑇𝑇2 starting from different snapshots

• DBSP compilation is expensive
• Only beneficial if it improves goodput/makespan

– More work per query, need to make that up
• Too complex in practice?
• Not the target for DBSP. Other tools?

Presenter Notes
Presentation Notes
You’re skeptical. Me too.

Some problems are conceptual.
If two transactions both delete a record, a naïve implementation would cancel out an insert from a subsequent transaction
one possible (hand waving) solution would issue “corrections” for committing transactions, but commit would need to be serialized

Some concerns with performance
Recall no blind writes: semantics of “delete the next insert” are not intended, so additional overhead here
DBSP uses Calcite to generate rust code… not optimized for ad hoc OLTP
This is only beneficial if incremental execution is more efficient than abort+restart or repair
could reduce the makespan of a set of transactions, but recall our target was latency variance
Memory cost in maintaining incremental structure

Some concerns are in the design and implementation
this is complex, may be difficult to create let alone go beyond PoC
Not what streaming IVM (DBSP) was built to do. Maybe need a different primitive

Consistency in Motion | HPTS 2024

Wild Optimism
• Cost-aware reordering

– If an update causes a large Δ𝑇𝑇2 for 𝑄𝑄𝑇𝑇2
Δ , reject it

– Queries with deadlines can become increasingly restrictive
• Speculation for distributed concurrency control

– Local sequencer speculatively orders transactions
– Repair batch with transactions from remote replicas

• Undo dependencies instead of waiting
– Mispredictions can be “fixed”
– Speculatively make dep. durable, then undo + commit

• Deferred commit of transactions that violate constraints
– Outcome-oriented schedule optimization
– Reorder transactions ahead until integrity constraint holds

Presenter Notes
Presentation Notes
To balance out the skepticism, here’s some wilder ideas on what one could do with commutative actions to reorder transactions

Cost-aware reordering
like escrow locks or field calls, handles to incremental updates could appear in lock tables
a reorder could be rejected- behaving like a lock- if the update would significantly change the output�deadlines: admit updates until the deadline approaches, then become more restrictive w/ conflicting txn
Speculation
e.g., replica in Calvin, the local sequencer can start executing transactions in a batch, correcting the result
Undo dependencies
if a transaction has a dependency on a running transaction, undo it and commit
could race undo w/ execution of the dependency
Deferred commit
- e.g., overdrawn funds. Admit transactions that make progress toward the constraint�- e.g. schedule to maximize constraint satisfaction (e.g. avoid overdraft by prioritizing deposit)
e.g. arbitrage: schedule constraints to maximum profit

TPC-C
Tiemo Bang and I started building TPC-C using DBSP and… so far it’s pretty OK?

Consistency in Motion | HPTS 2024

Related work: LogicBlox

• LogiQL (Datalog extension)
• Worst-case optimal join

– Leapfrog Trie Join
• Incremental maintenance
• Full serializability

Veldhuizen, Todd L. "Incremental maintenance for leapfrog
triejoin." arXiv preprint arXiv:1303.5313 (2013).
Veldhuizen, Todd L. "Transaction repair: Full serializability
without locks." arXiv preprint arXiv:1403.5645 (2014).

Presenter Notes
Presentation Notes
There is one more reason for optimism:

LogicBlox already did a thing like this, customized to their (fancy) language LogiQL and algorithms/data structures (Leapfrog Trie Join).
 Hopefully, my novelty will be in the "wild optimism" slides, for more standard SQL and standard data structures.

Consistency in Motion | HPTS 2024

Related work: Transaction Repair

• Re-execute only
conflicting subsets of txn

Dashti, Mohammad, Sachin Basil John, Amir Shaikhha, and Christoph Koch. "Transaction repair for
multi-version concurrency control." In Proceedings of the 2017 ACM International Conference on
Management of Data, pp. 235-250. 2017.
Burke, Matthew, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha Crooks. "Morty: Scaling
Concurrency Control with Re-Execution." In Proceedings of the Eighteenth European Conference on
Computer Systems, pp. 687-702. 2023.
Dong, Zhiyuan, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao, Haibo Chen, Aurojit Panda,
and Jinyang Li. "Fine-Grained Re-Execution for Efficient Batched Commit of Distributed Transactions."
Proceedings of the VLDB Endowment 16, no. 8 (2023): 1930-1943.

Presenter Notes
Presentation Notes
There is also recent work on parsimonious re-execution in concurrency control, to repair conflicts instead of aborting+retrying
Also very cool, using these in reordering: could be some space/time tradeoffs as incremental techniques retain a lot of state to make integrating new changes efficient

Consistency in Motion | HPTS 2024

Questions?

• Transaction reordering by incremental maintenance
– Related work?
– Possibly relevant workloads?
– Confounding problems?

Thank you!
Mihai Budiu, Val Tannen, Tiemo Bang, Conor Power,

Natacha Crooks, Joe Hellerstein

chris_douglas@berkeley.edu

Presenter Notes
Presentation Notes
Again, this is work in early stages. Please let me know about:
related work, relevant workloads, confounding problems, etc.

Consistency in Motion | HPTS 2024

References
Budiu, Mihai, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. "DBSP: Automatic
Incremental View Maintenance for Rich Query Languages." Proceedings of the VLDB Endowment 16, no.
7 (2023): 1601-1614.
Green, Todd J., Zachary G. Ives, and Val Tannen. "Reconcilable differences." In Proceedings of the 12th
International Conference on Database Theory, pp. 212-224. 2009.
Veldhuizen, Todd L. "Incremental maintenance for leapfrog triejoin." arXiv preprint arXiv:1303.5313
(2013).
Veldhuizen, Todd L. "Transaction repair: Full serializability without locks." arXiv preprint
arXiv:1403.5645 (2014).
Burke, Matthew, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha Crooks. "Morty: Scaling
Concurrency Control with Re-Execution." In Proceedings of the Eighteenth European Conference on
Computer Systems, pp. 687-702. 2023.
Dong, Zhiyuan, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao, Haibo Chen, Aurojit Panda,
and Jinyang Li. "Fine-Grained Re-Execution for Efficient Batched Commit of Distributed Transactions."
Proceedings of the VLDB Endowment 16, no. 8 (2023): 1930-1943.
Dashti, Mohammad, Sachin Basil John, Amir Shaikhha, and Christoph Koch. "Transaction repair for
multi-version concurrency control." In Proceedings of the 2017 ACM International Conference on
Management of Data, pp. 235-250. 2017.

Consistency in Motion | HPTS 2024

DBSP ⊆ Differential Dataflow

DBSP (so far)

• Synchronous
– Unique predecessor

• Choose system/event time
– other is “regular data”

• Maintains up-to-date state

Differential Dataflow

• Partial order
– Captures causality

• Out-of-order
– Patch the present with

past events
• Complex state

– Möbius inversion
– see: “Foundations of

Differential Dataflow”

42

Presenter Notes
Presentation Notes
Both incrementalizing expressions on Abelian groups
- the math is “fancy”: See Foundations of Differential Dataflow
 - built on Mobius inversion
 - technique borrowed from number theory, used in combinatorics
 - extremely technical; credible sources tell me that few understand (myself included!)

	Consistency in Motion
	A Familiar Problem
	Concrete Scenario
	Storage Manager
	Storage Manager
	Storage Manager
	Storage Manager
	(╯°□°)╯︵ ┻━┻
	(╯°□°)╯︵ ┻━┻
	Can we do this in general?
	Agenda
	Reordering Transactions in Flight
	Agenda
	ℤ-sets
	ℤ-sets
	ℤ-Relations
	Write and Write-1 in ℤ-sets
	Write and Write-1 in ℤ-sets
	Read in ℤ-sets
	Agenda
	DBSP
	DBSP
	DBSP Capabilities
	Example: DBSP + Writes
	DBSP: Join
	DBSP: Join
	DBSP: Join
	DBSP: Join
	DBSP: Join
	DBSP: Join
	Agenda
	DBSP: Join
	DBSP: Join
	Skepticism
	Wild Optimism
	Related work: LogicBlox
	Related work: Transaction Repair
	Questions?
	References
	DBSP ⊆ Differential Dataflow

