
Michael Cahill, University of Sydney, September 2024

By machines, for machines

A DBMS without (human)
programmers

 1

mailto:michael.cahill@sydney.edu.au

AI code generation

• Prompts and responses can be natural
language, code, or a mixture of the two.

• Each system has a limited amount
of context.

• If the prompt is larger than the context size,
only a sliding window is accessible to the
model as it generates the response.

• Results are non-deterministic.

• Training sets are huge and some include
open source DBMS implementations.

2

Andrej Karpathy, ex-director of AI at Tesla:

Auto-correct on steroids?

3

Today: pair programming

• Add a chat interface to development
environments

• Programmers can ask “how do I?”
questions

• The IDE provides context to the model
(usually from the active source file)

• Responses inform the programmer

• Often: copy / paste
4

AI programmers for hire

5

On the other hand hand…

6

Why try to build a DBMS with AI?

• Can non-experts build something that used to be the domain of a few?

• Do LLMs lower the bar?

• Key question: what is good code?

• Focusing on a domain where we have experience

• There are objective tests for DBMS correctness and performance

• Less so for the code itself

• New lens for thinking about software engineering
7

What do SWEs actually do?

• A lot more than turning a specification into code!

• Code reviews

• Debugging

• Tuning

• Mapping new features onto a system

• While maintaining compatibility and online upgrades

• Refactoring / redesigning / re-architecting
8

Tasks to prompts

• Code review:

• 3 different angles + decider

• Debugging:

• Generate a test that demonstrates the
problem

• Propose a code / prompt change

• Repeat until all tests pass; and

• Change accepted by code review
9

Can language models fix bugs?

10

Published as a conference paper at ICLR 2024

SWE-BENCH: CAN LANGUAGE MODELS RESOLVE
REAL-WORLD GITHUB ISSUES?

Carlos E. Jimenez
* 1,2

John Yang
* 1,2

Alexander Wettig
1,2

Shunyu Yao
1,2

Kexin Pei
3

Ofir Press
1,2

Karthik Narasimhan
1,2

1Princeton University 2Princeton Language and Intelligence 3University of Chicago

ABSTRACT

Language models have outpaced our ability to evaluate them effectively, but for
their future development it is essential to study the frontier of their capabilities.
We find real-world software engineering to be a rich, sustainable, and challenging
testbed for evaluating the next generation of language models. To this end, we in-
troduce SWE-bench, an evaluation framework consisting of 2,294 software engi-
neering problems drawn from real GitHub issues and corresponding pull requests
across 12 popular Python repositories. Given a codebase along with a description
of an issue to be resolved, a language model is tasked with editing the codebase
to address the issue. Resolving issues in SWE-bench frequently requires under-
standing and coordinating changes across multiple functions, classes, and even
files simultaneously, calling for models to interact with execution environments,
process extremely long contexts and perform complex reasoning that goes far be-
yond traditional code generation tasks. Our evaluations show that both state-of-
the-art proprietary models and our fine-tuned model SWE-Llama can resolve only
the simplest issues. The best-performing model, Claude 2, is able to solve a mere
1.96% of the issues. Advances on SWE-bench represent steps towards LMs that
are more practical, intelligent, and autonomous.

1 INTRODUCTION

Language models (LMs) are rapidly being deployed in commercial products such as chatbots and
coding assistants. At the same time, existing benchmarks have become saturated (Kiela et al., 2021;
Ott et al., 2022) and fail to capture the frontier of what state-of-the-art LMs can and cannot do. There
is a need for challenging benchmarks that more accurately reflect real-world applications of LMs to
help shape their future development and usage (Srivastava et al., 2023).

Figure 1: SWE-bench sources task instances from real-world Python repositories by connecting
GitHub issues to merged pull request solutions that resolve related tests. Provided with the issue
text and a codebase snapshot, models generate a patch that is evaluated against real tests.

Building a good benchmark is difficult since tasks must be challenging enough to stump existing
models, but model predictions must also be easy to verify (Martı́nez-Plumed et al., 2021). Coding

⇤Equal contribution. Correspondence to {carlosej,jy1682}@princeton.edu.
Data, code, and leaderboard at swebench.com

1

ar
X

iv
:2

31
0.

06
77

0v
2

 [c
s.C

L]
 5

 A
pr

 2
02

4

Can language models fix bugs?

11

Current state

• Starting with a K/V store

• Scripts call model to generate code

• Template language for prompts

• C for now just for header separation

• Generating tests and implementation

• Non-determinism, retries required

• Human-in-the-loop for now

12

Enforcing code constraints

• In any complex code base, humans use guard rails for sanity checking

• e.g., “always check the return value of malloc”

• or, “every latch acquire should have a matching release”

• How well can these be enforced by LLMs?

• cf static analysis tools, false positives, etc.

• much simpler to express than writing a tool to walk an AST

13

Haven’t we seen this before?

1. Outsourcing

• … with an immediate feedback loop

2. Code generation

• … great for automating repetitive tasks, can be hard to generalize

3. Refining a formal specification into an implementation

• … natural language is informal but can be understood by more people

• … here, we need to tame non-determinism
14

Taming non-determinism

• We have processes to cope with variation among programmers

• Code review process can propose alternatives and choose the best

• Test-driven development

• But who makes sure the tests are valid and comprehensive?

• Get a(nother) model to explain generated code

• Iterate until the explanation “matches” the prompt

15

Non-determinism and quality

• Building strong properties from fallible components is a classic database problem

• Lots of support from the community building on LLMs, e.g., LangGraph

16

Open questions
• Can this produce a functioning DBMS?

• How does context size constrain code structure?

• Effort compared to human-built DBMS to:

• Debug?

• Extend / improve?

• Reconfigure?

• “Clean room” possible?

• existing DBMS -> description -> new DBMS

• If applications are also generated, what kinds of
interfaces work best?

17

