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Steering Query Optimizers using ML

Goal

Share our experience on running a ML-based Query Optimizer Advisor at scale

What you will learn (Outline)

®* How query hints are used to steer query optimizers toward better plans

®* How to automate hint generation using ML

®* How to scale it over hundreds of thousands of jobs

* Key lessons learned
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Steering Query Optimizers



Rule Based Optimizer
...Query (job) ... — Rules. ;

in® = )

: inl = SELECT * FROM product WHERE ...; & : X ."-
: SELECT A, COUNT(*) FROM in®@ JOIN inl : :

: ROUP BY ; :

— [ ......... Search Optimizer 10,000 feet POV:

e SN e SN e * Rules used to transform query graph
A l * Rule configuration dictates the search space



Cheapest Plan
...Query (job) ... — Rules. ;

in® = )

: inl = SELECT * FROM product WHERE ...; & : X ."-
: SELECT A, COUNT(*) FROM in®@ JOIN inl : :

: ROUP BY ; :

SR S earc h Optimizer 1 0,000 feet POV:

e > e - e * Rules used to transform query graph
* Rule configuration dictates the search space



What if cheapest plan is not

. - ?
..Query (job) ... optimal R U T @ Gy

in® = )

: inl = SELECT * FROM product WHERE ...; & : X ."-
: SELECT A, COUNT(*) FROM in®@ JOIN inl : :

: ROUP BY ; :

Not optimal due to mistakes in the heuristics,
e ---> e ---> e cardinalities, costs, other assumptions



Disabling Rules

...Query (job) ... R U T @ Gy
1 2 SELECT - FROM product WHERE | .1 B Rule Configuration «««+-... > X

// Optimizer hint disabling rule 20 Treersereucnussnsseronannnns .
-optFlags DR(20);

: in

4. °

e Search Block bad path



Enabling Rules
— Query (job) ... e RUT @S

in® = SELECT * FROM sales WHERE ...;
inl = SELECT * FROM product WHERE ...; : T
SELECT A, COUNT(*) FROM in@ JOIN inl . :
GROUP BY ...: -
..................................................................... .
v

e Op":_-im-iZQ|f".............................................................E

e e e Enable previously unreachable
; ---> -—-> E
search space



Steering Query Optimizer

in®@ = SELECT * FROM sales WHERE ...;

inl = SELECT * FROM product WHERE ...; = LLL]

SELECT A, COUNT(*) FROM in® JOIN inl :
GROUP BY ...:

R Search ..., Scope usersalready use rule hints to fine tune queries:

e s e s e « Upto ~9% of jobs contain user-provided rule hints

Query (j()b)________E - Rules - ;

« Difficult to tune, requiring a lot of expertise and experimentation

« Can we automate this at scale?
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Rule Signature

. Query (job) .. e RUT € S vy
 EENE.E

: in@ =

.................. Search Rule Signatur e Define which rule is actually
e’@ ’Q H N used to reach the final
Prsesssms e 5 esssenssssmsesssennssssssssssssssaasssse s aaae s saaasens E query plan



Core Techniques Rule Signature

Query (jOb)........g — Rule s §
in@ = SELECT * FROM sales WHERE ...: . ."_.

inl = SELECT * FROM product WHERE ...; =
SELECT A, COUNT(*) FROM in@ JOIN inl : :
H e esssssssssssssssrsssssssansanannannnnnnnnnn -

GROUP BY ...;

Number of jobs
Number of jobs

N

N
o

0 20 40 60
Number of rules used in a job

Rule Signature

27256 potential rule signatures. But it has a
lot of structure!

SS GE Ei I (: r] e ?_ FQALJ 'l EE ES -i g; N Ea 1: u r EE-"-é [:)eafir1(3 \A/P]i(:}] rLJ|63 iE; Ea(:tLJE3||)/

e-.»e ---»G . .. used to reach the final

.............................................. query plan



Core Technigues Job Span

~Rule Signature-

» / “A A" Py

Heuristic iterations i ® . /.\. .\ ¢
° °
Optimizer

Set of rules that can change the final query plan
(i.e., the interesting set of rules)
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As RL Problem

Optimizer



Automation As RL Problem

Optimizer

Job metadata,

HEE- N RL Agent

TassssssssssssssssEEsEsEsEssnsanannn




Automation As RL Problem

1 [ [ M § RL Agent

TenssssssssssssssssssEssnssEsEEnnnnnn



Automation As RL Problem

Y Y /o ®
‘4 : .
@ o o, : Job execution
.‘O ./ -~ . 4 -~ :
N o
°®

Optimizer Scope Cluster

Job metadata,
Plan, Rule signature, Span, etc.

----------------------------------- "

1 [ [ M § RL Agent

TenssssssssssssssssssEssnssEsEEnnnnnn



Automation As RL Problem

o

c—
S
- O

Scope Cluster

e o e Job execution

Performance results:
Job latency, resources, etc.

1 [ [ M § RL Agent

TenssssssssssssssssssEssnssEsEEnnnnnn



Automation As RL Problem

e o e Job execution

Scope Cluster

Performance results:
Job latency, resources, etc.

Problems
« We need to provide a reliable,
scalable, and durable RL Service
« 2720 s still a large space to explore



Automation As RL Problem

o o o [ | <>
R S S Job execution _

o o o : _ a
‘. —
Optimizer Scope Cluster

Performance results:
Job latency, resources, etc.

Job metadata,
Plan, Rule signature, Span, etc.

................................... .

. . .---.§ Azure Solution .
e Azure Personalizer

Personalizer Contextual bandit over 1-bit
neighborhood of the span



Automation As RL Problem

Job execution

le Configuratio

Job metadata,
Plan, Rule signature, Span, etc.

................................... .

Azure
Personalizer

....................................

o

c—
S
- O

Scope Cluster

Performance results:
Job latency, resources, etc.

Problems

* Running new configurations without

any guardrail is dangerous (e.g.,
regressions)

* Assumption that the optimizer will
find a new plan with lower cost and
the lower cost plan will execute faster



Automation Lower Costs are not enough

Slight Correlation: Estimated Cost vs. Latency

1.50 A

1.25 A

1.00 A

0.7549 . ¢

0.50 A

Latency delta

0.25 A

0.00 A

—0.25 A

—0.50 A

-1.0 -0.8 -0.6 -0.4 -0.2
Estimated cost delta

Conclusion: We need runtime information to avoid regressions. But ...



stdev / mean

100 -

10—1 -

High Variance makes Learning Difficult

CPU Hours

Latency
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Run the same job on same data 10 times



Automation As RL Problem

o o o ° | >
RN S Job execution U
o —
‘® e o U
Optimizer Scope Cluster

le Configuratio
Performance results:
Job latency, resources, etc.

Job metadata,
Plan, Rule signature, Span, etc.

................................... .

 EEEE- N Solution

Personalizer e .
ersond € Validation model checking that CPU
Hours + data read and data written
do not increase substantially




Let’'s make it Concrete

—
SCOPE : ob
Job Optimizer Execution Repository




Let’'s make it Concrete

—
SCOPE . . .
Job Optimizer Execution Rep(())story Stats & Insight Service

% |

Flighting Service

Flighting Service: A/B testing of different query plans

Stats & Insight Service: Serving machine learning models and hints (e.g., |- Vs R)



Online

Offline

Let’'s make it Concrete

Job

SCOPE
Optimizer

t

Repository

Stats & Insight Service

t |

Flighting Service

a

runtime stats

\ 4

Feature
Generation

- L Hint
p||at|on} [ Validation H Generation }

H Recommendation H Recom
A

rule configuration
A\

y

Azure Personalizer

estimated cost

A

Pipeline trained daily on ~5% of Scope jobs

A pipeline run takes about 24h and about 500 vcores
For jobs using QO-Advisor, 14% overall improvement in CPU Hours
Generate ~200k events per day for Azure Personalizer
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Flighting Limitation

SCOPE
Optimizer

t

Stats & Insight Service

t |

Flighting Service

A

()]
S -
= Job
(@)
()]
.E Feature
;-E . Generation
(@)

rule configuration
A\

H Recommendation
A

y

Azure Personalizer

a

\ 4

fVaIidation

runtime stats

Hint
Generation

estimated cost

Flighting is limiting the number of jobs we can optimize
Can we replace offline validation with online randomized A/B testing’



Learning over Repeated Runs

Repository

Stats & Insight Service

t |

_.[

SCOPE
Job Optimizer
GeFr?ZJﬁgtriEc})n H Recommendation H Recompilation ]

rule configuration
\ 4

Azure Personalizer

estimated cost

Flightig Service

runtime stats

A\ 4

Val

ion

S
R Hint
"| Generation



Learning over Repeated Runs

Job O?)%Omli)ZEer Stats & Insight Service

t t m

v

) (C D (
Feature . . R Hint
—{ Generation H Recommendation H Recompilation > Generation
J AU J
a

rule configuration estimated cost 181
Azure Personalizer [« 15
configuration S
— 12
£
- Informed randomized deployment of configurations o] g = 0.0001
» Risk-adverse contextual bandit Jd . * a<0.0001

0.5 1.0 15 20 25 30
Regressions (%)



histogram count

Scaling Randomized Online A/B Testing Results

Performance of a cherry-picked job

12 A

10 A

BN default

B recommend

0.004 0.005 0.006 0.007
normalized pn

0.008

normalized_pn = CPU_hours / input_data_size

Hint improves normalized PN
by ~25% for this particular job

normalized pn delta

Performance for each unique

recurring job

0.05 A

—0.15 A
—0.20 A
—0.25 1

—0.30 1

0.00 1 IIIIIIIIl""IIlIIIlnu--...-
-0.05 1
-0.10 1
0 10

unique recurring job

“delta”: lower is better (PN_recommend/PN_default — 1)

T T T

20 30 40 50 60

Informed randomization + risk-adverse
algorithm lowers the chances of regressions




Summary

« Pipeline runtime and resource utilizations
« From 24h to ~3h

- Only uses vcores for recompilation and generating estimates

- Job Coverage:
« We train over all Scope jobs

. i 0 A —p |NOt as high as before due to
On average, apply hint on 4.84% of recurring jobs risk-adverse algorithm

« CPU Hours Improvement:
« For jobs using QO-Advisor, overall improvement: 7.29%

. o . _
« Small regressions for ~30% jobs \ More regressions due to online
exploration after removing offline

validation step

- We decided to shut down the project after ~3 years
- Total impact on Scope workload was less than expected
- Regressions were a major source of concern
« Azure Personalizer got discontinued
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Conclusion/Key Takeaways

. This is a hard problem: state-of-the-art optimizers are hard to beat on average

Inaccurate cost estimates: can be solved with validation (but it’s expensive)
But cannot really ighore cost estimates: ML models make mistakes

Noisy performance numbers: ML models have hard time converging
Sparse data: This is the cost of safety

Online exploration does not work well if you must avoid regressions: Offline
validation is better (but it’s expensive)

. Featurization of database jobs: The embedding-based approaches might have

a great potential, but we didn’t have the time to investigate this path

Thank You!

Wangda Zhang, Paul Mineiro, Shi Qiao, Nasim Ghazanfari, Karlen Lie, Marc Friedman, Rafah Hosn,
Hiren Patel, Alekh Jindal, Parimarjan Negi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska



