

Running a Query Optimizer Advisor in Production

What we Learned (and What the Model didn't)

Matteo Interlandi

HPTS 2024

Crash Course on Steering Query Optimizers using ML

Goal

Share our experience on running a ML-based Query Optimizer Advisor at scale

What you will learn (Outline)

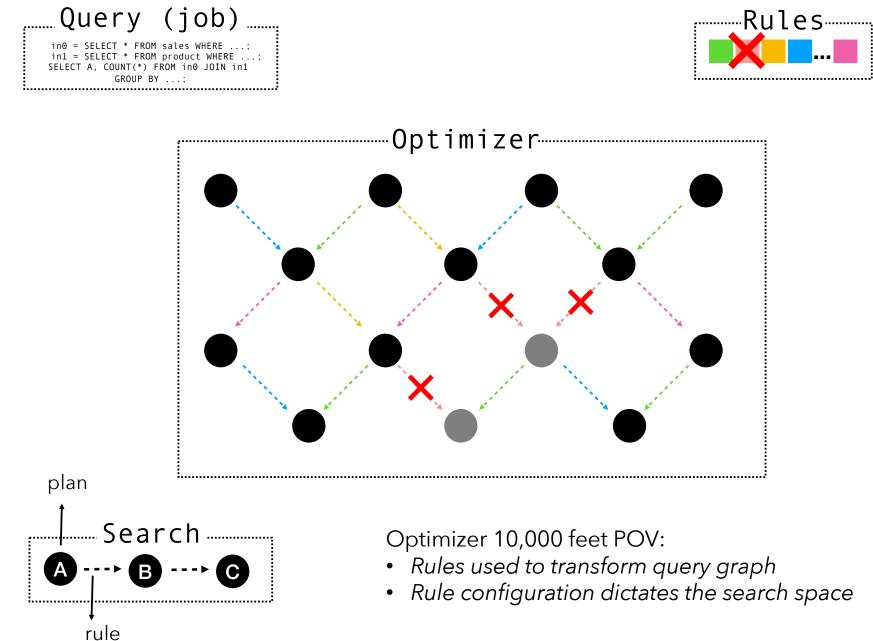
- How query hints are used to steer query optimizers toward better plans
- How to automate hint generation using ML
- How to scale it over hundreds of thousands of jobs
- Key lessons learned

For more Details

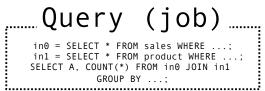
Steering Query Optimizers

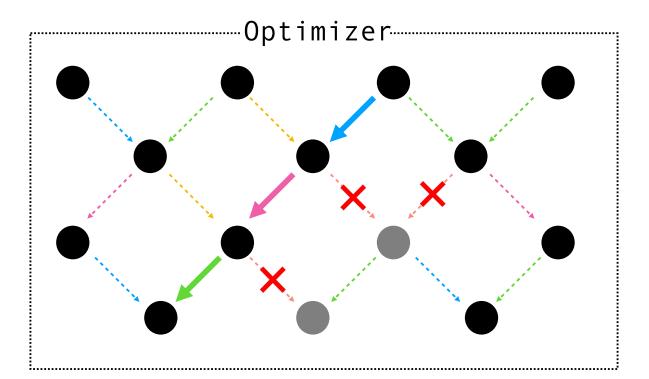
The Intuition

Intuition Rule Based Optimizer



Intuition Cheapest Plan



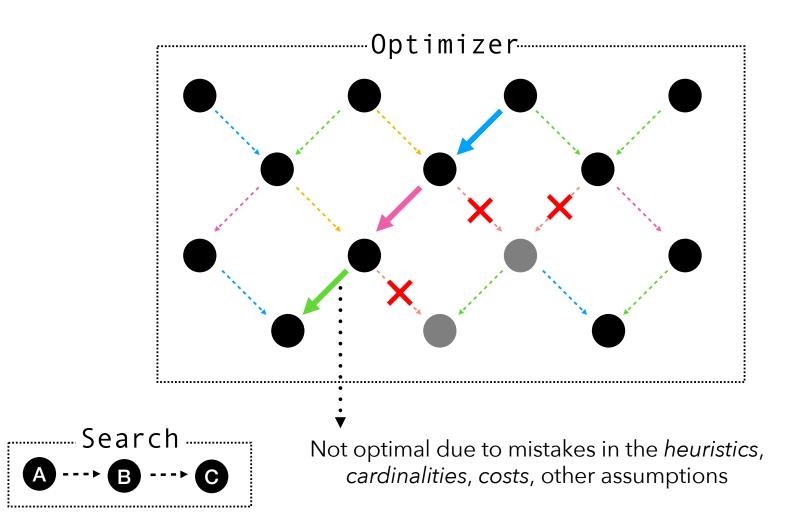


Optimizer 10,000 feet POV:

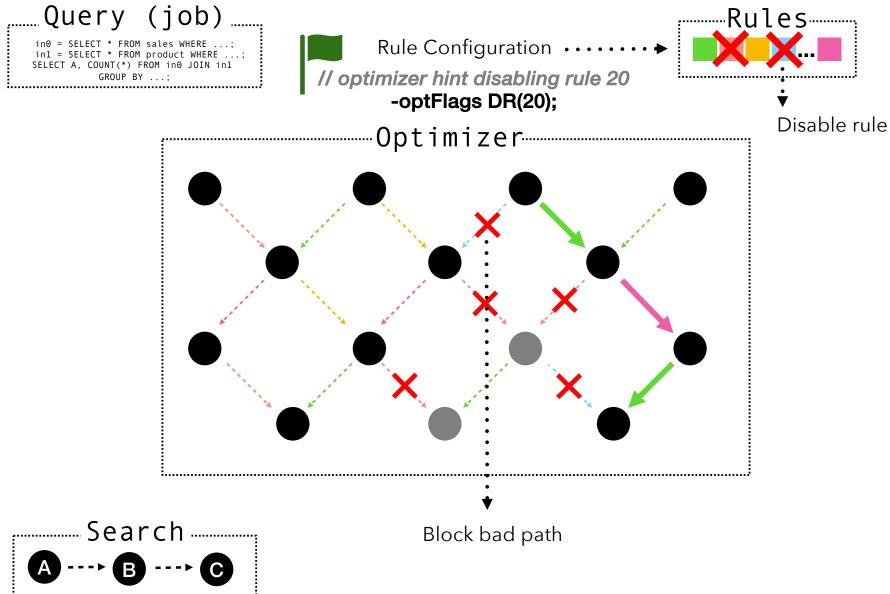
- Rules used to transform query graph
- Rule configuration dictates the search space

Query (job)

in0 = SELECT * FROM sales WHERE ...; in1 = SELECT * FROM product WHERE ...; SELECT A, COUNT(*) FROM in0 JOIN in1 GROUP BY ...;

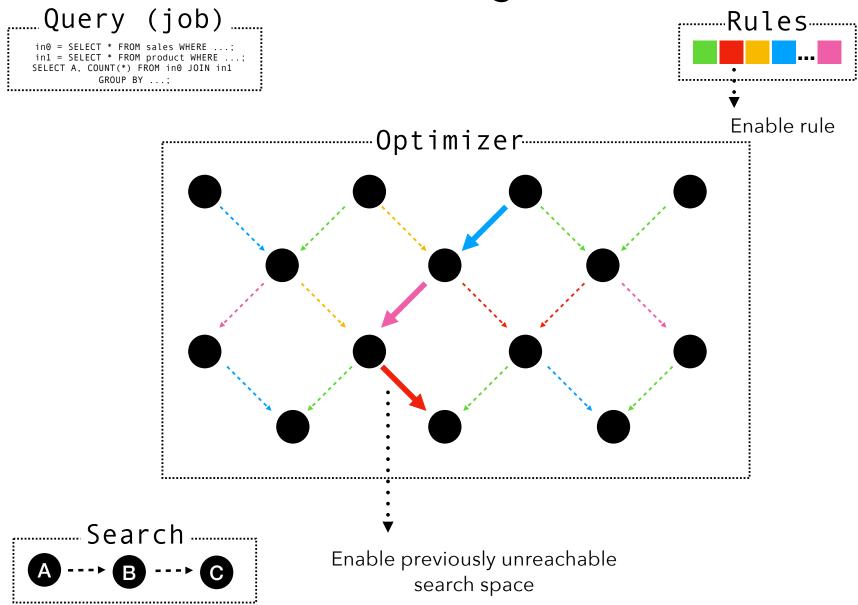


Intuition **Disabling Rules**

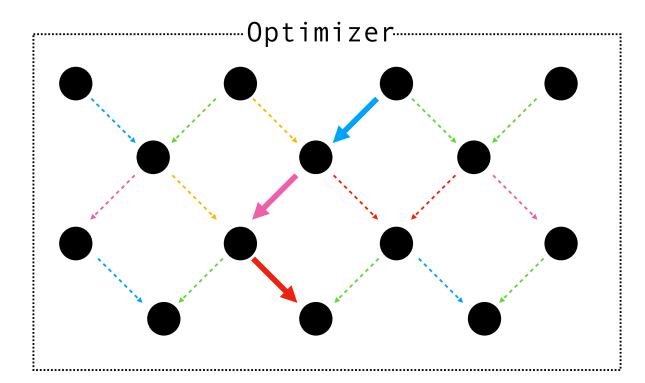


.....

Intuition Enabling Rules



Intuition Steering Query Optimizer



Query (job)

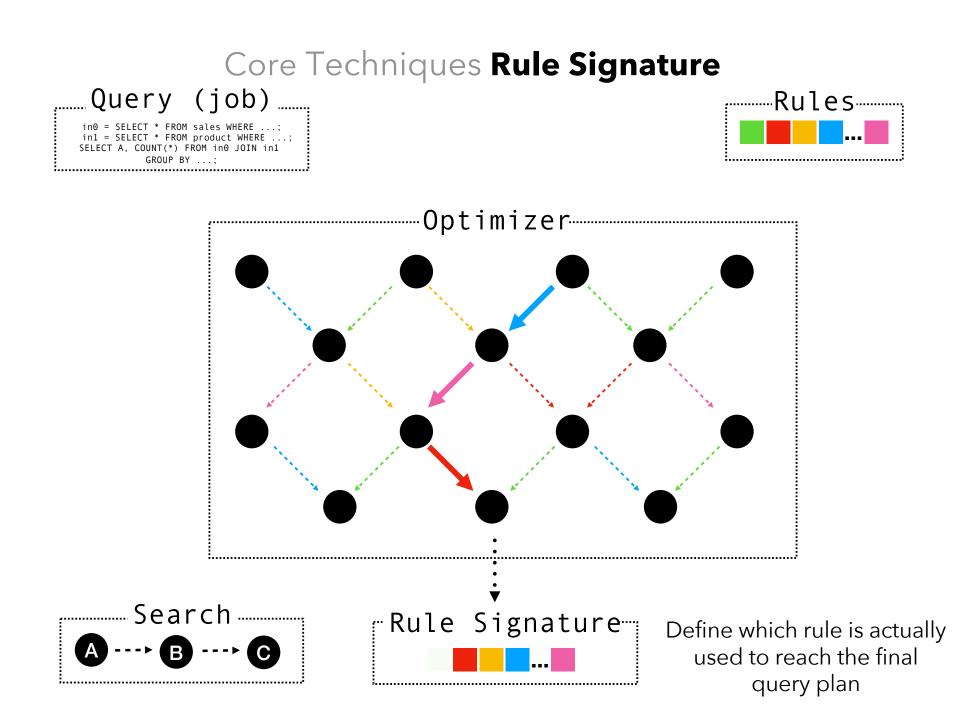
in0 = SELECT * FROM sales WHERE ...; in1 = SELECT * FROM product WHERE ...; SELECT A, COUNT(*) FROM in0 JOIN in1 GROUP BY ...;

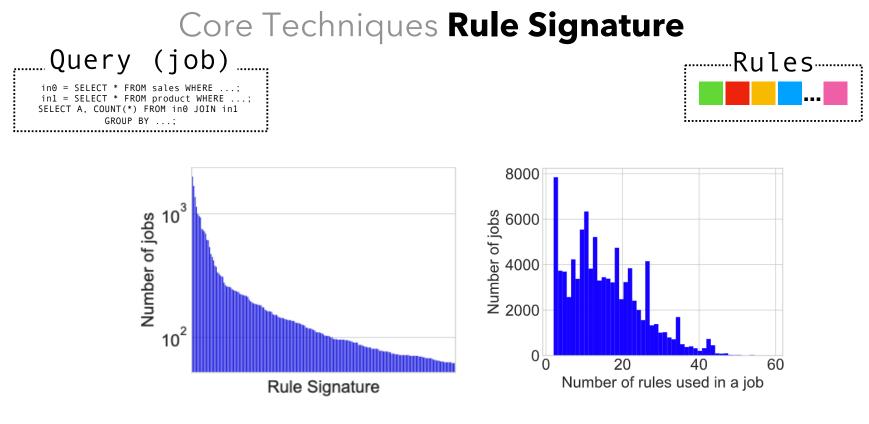
Scope users already use rule hints to fine tune queries:

- Up to ~9% of jobs contain user-provided rule hints
- Difficult to tune, requiring a lot of expertise and experimentation
- Can we automate this at scale?

Steering Query Optimizers

Core Techniques

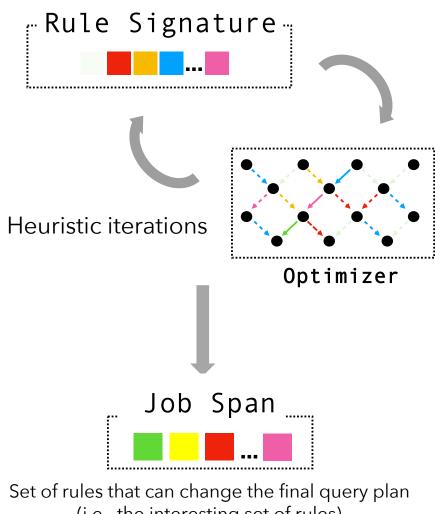




2^256 potential rule signatures. But it has a lot of structure!

Define which rule is actually used to reach the final query plan

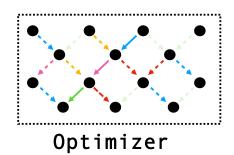
Core Techniques Job Span

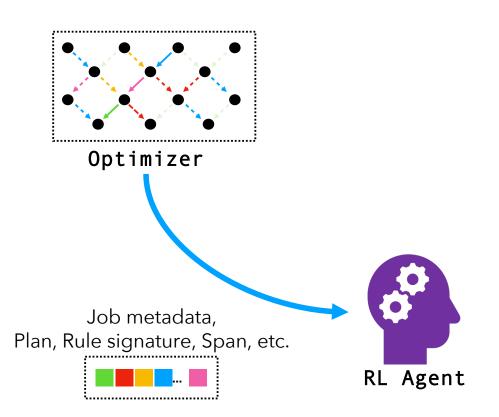


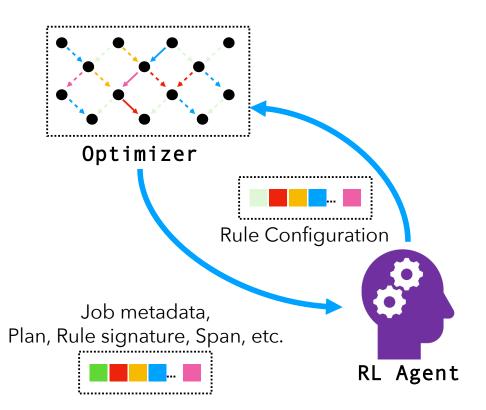
(i.e., the interesting set of rules)

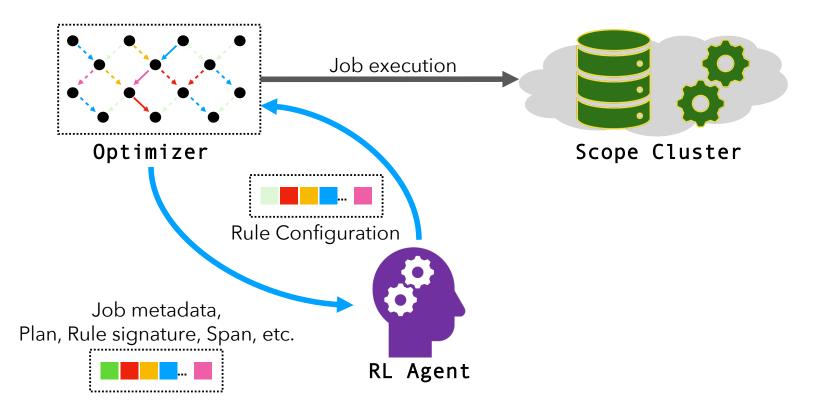
Steering Query Optimizers

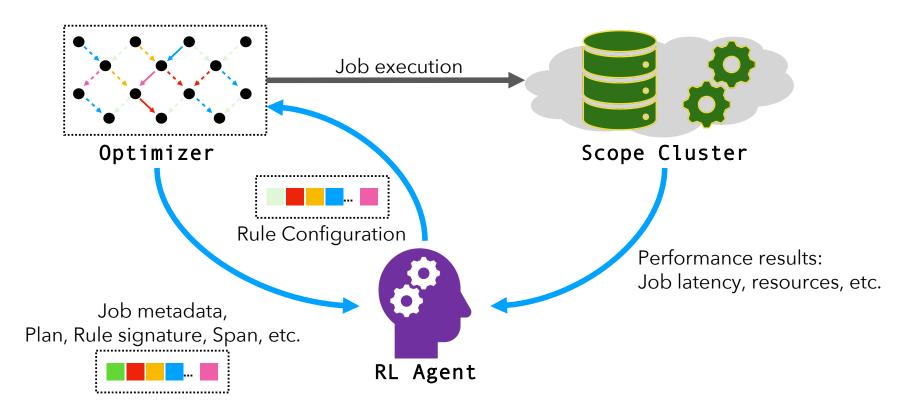
The Automation

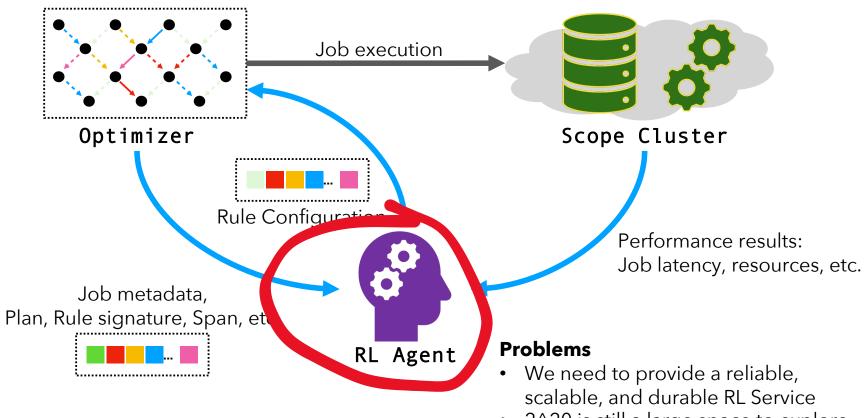




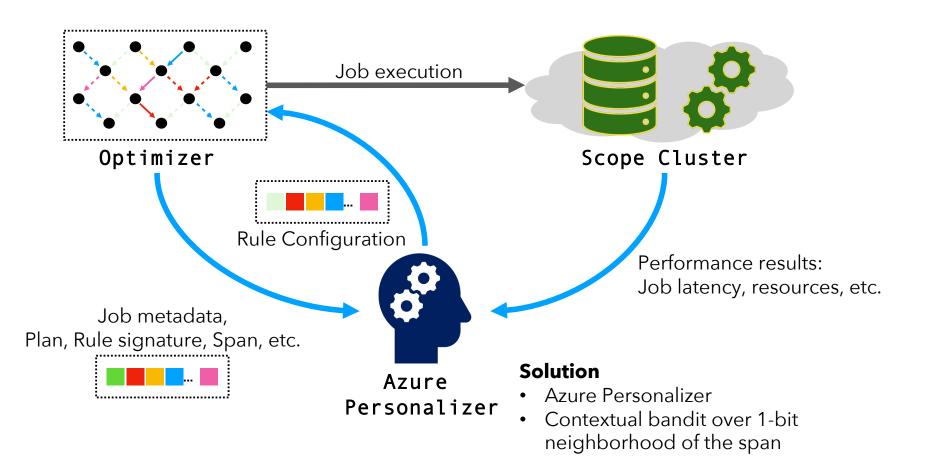


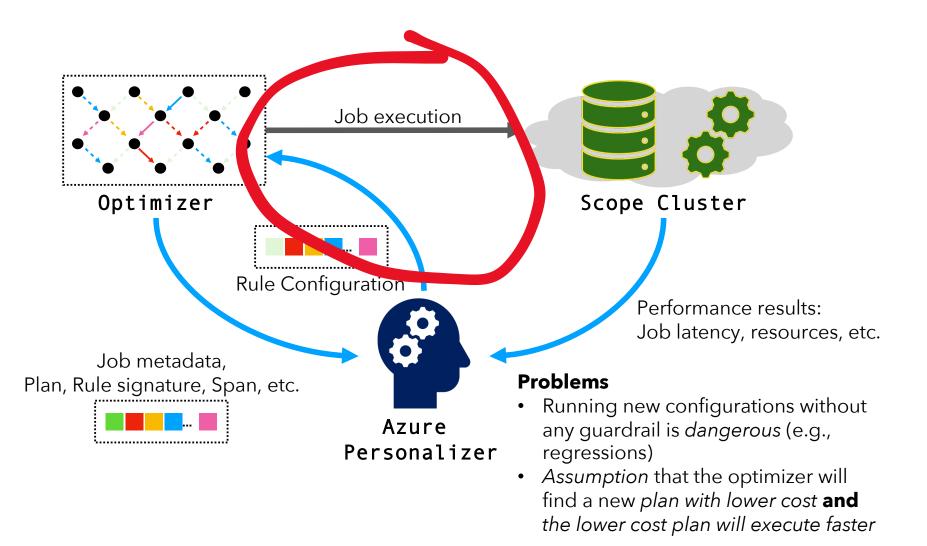




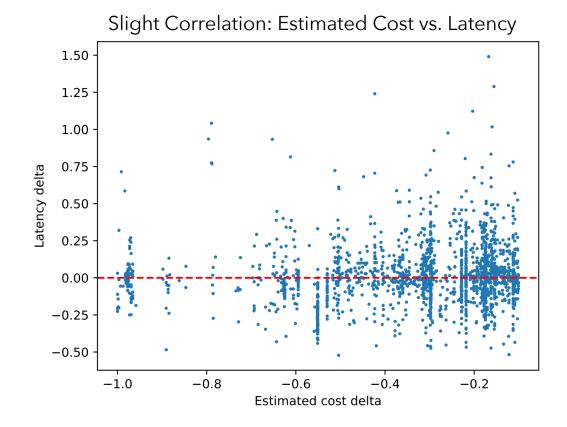


• 2^20 is still a large space to explore



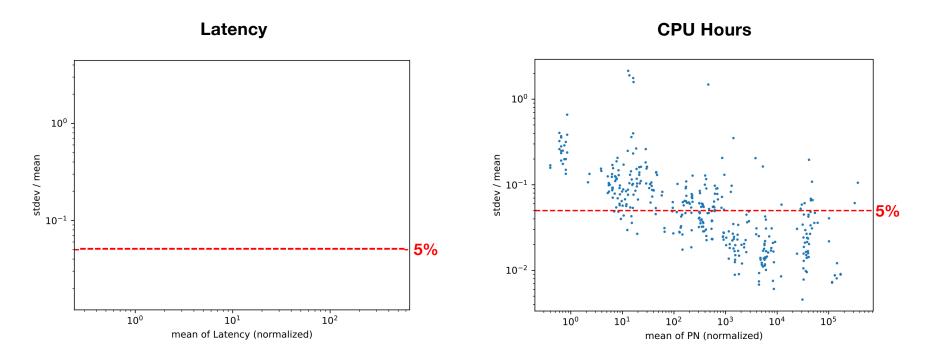


Automation Lower Costs are not enough

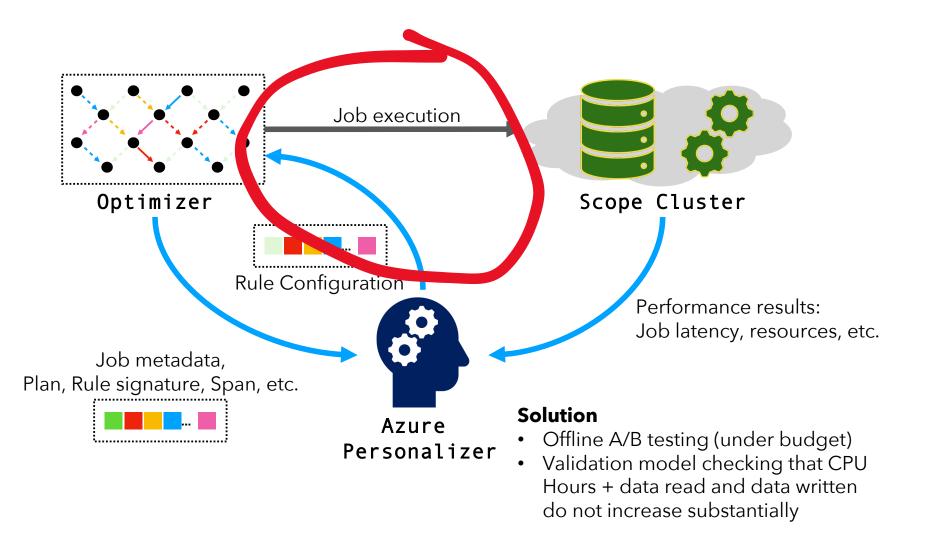


Conclusion: We need runtime information to avoid regressions. **But** ...

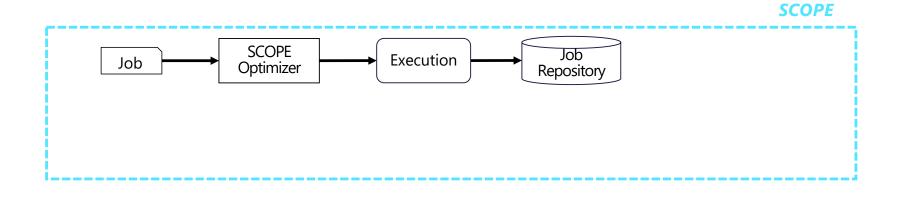
Automation High Variance makes Learning Difficult



Run the same job on same data 10 times

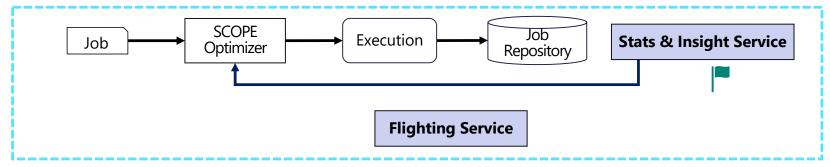


Automation Let's make it Concrete



Automation Let's make it Concrete

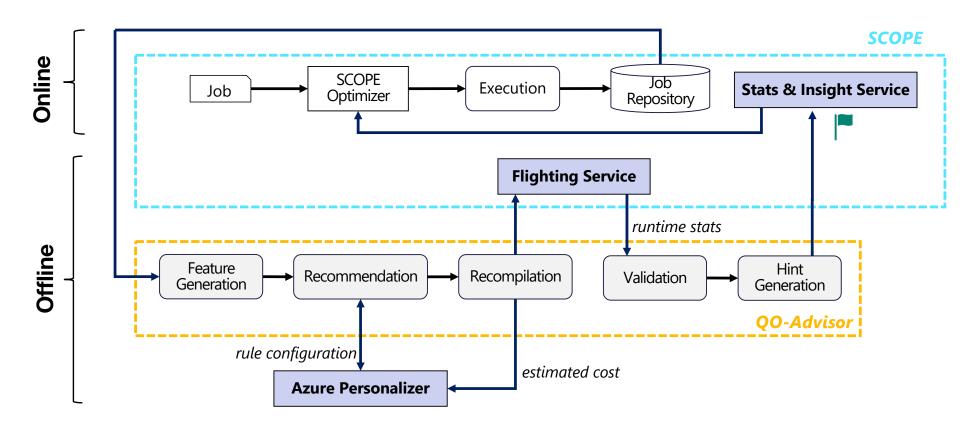
SCOPE



Flighting Service: A/B testing of different query plans

Stats & Insight Service: Serving machine learning models and hints (e.g., 🔽 vs 💢)

Automation Let's make it Concrete

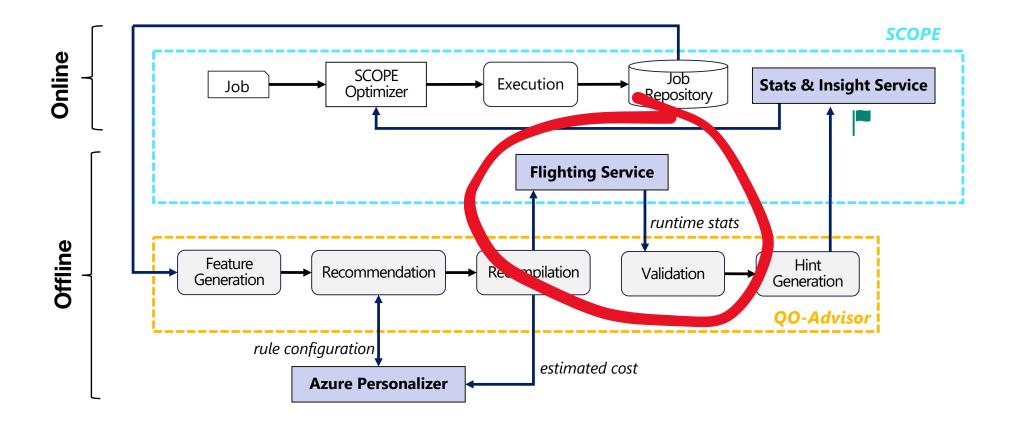


- Pipeline trained daily on ~5% of Scope jobs
- A pipeline run takes about 24h and about 500 vcores
- For jobs using QO-Advisor, 14% overall improvement in CPU Hours
- Generate ~200k events per day for Azure Personalizer

Steering Query Optimizers

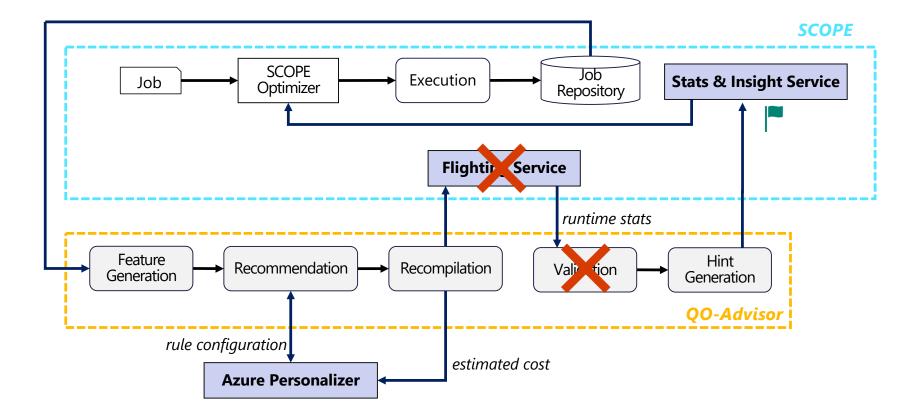
Scaling

Scaling Flighting Limitation

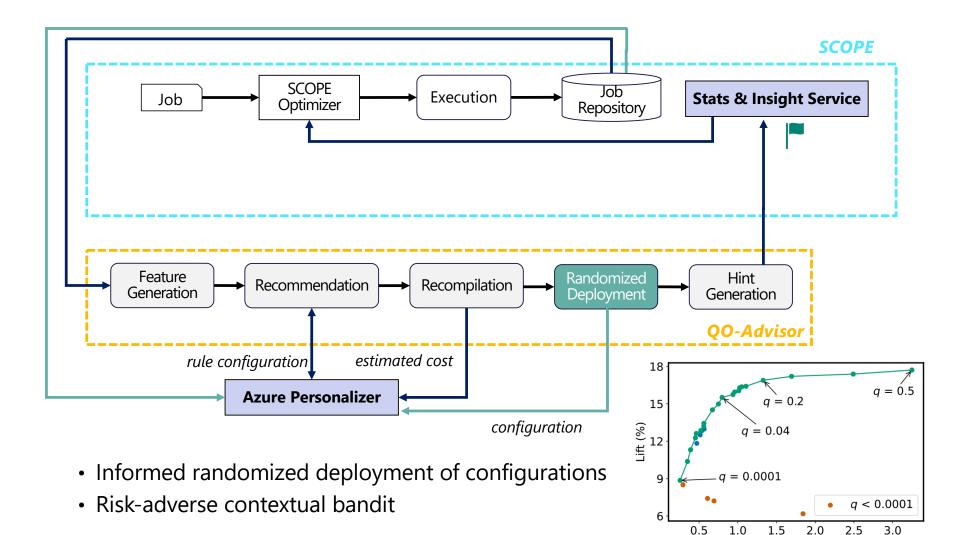


Flighting is limiting the number of jobs we can optimize *Can we replace offline validation with online randomized A/B testing*?

Scaling Learning over Repeated Runs



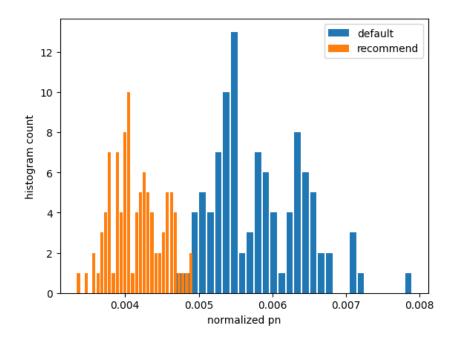
Scaling Learning over Repeated Runs



Regressions (%)

Scaling Randomized Online A/B Testing Results

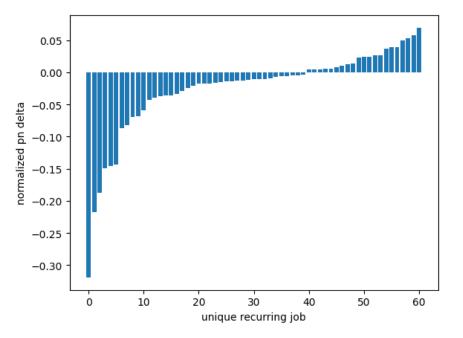
Performance of a cherry-picked job



normalized_pn = CPU_hours / input_data_size

Hint improves normalized PN by ~25% for this particular job

Performance for each unique recurring job



"delta": lower is better (PN_recommend/PN_default - 1)

Informed randomization + risk-adverse algorithm lowers the chances of regressions

Scaling Summary

- Pipeline runtime and resource utilizations
 - From 24h to ~3h
 - Only uses vcores for recompilation and generating estimates
- Job Coverage:
 - We train over all Scope jobs
 - On average, apply hint on 4.84% of recurring jobs –
- CPU Hours Improvement:
 - For jobs using QO-Advisor, overall improvement: 7.29%

Not as high as before due to

risk-adverse algorithm

- We decided to shut down the project after ~3 years
 - Total impact on Scope workload was less than expected
 - Regressions were a major source of concern
 - Azure Personalizer got discontinued

Conclusion/Key Takeaways

- 1. This is a hard problem: state-of-the-art optimizers are hard to beat on average
- 2. Inaccurate cost estimates: can be solved with validation (but it's expensive)
- 3. But cannot really ignore cost estimates: ML models make mistakes
- 4. Noisy performance numbers: ML models have hard time converging
- 5. Sparse data: This is the cost of safety
- 6. Online exploration does not work well if you must avoid regressions: Offline validation is better (but it's expensive)
- **7. Featurization of database jobs:** The embedding-based approaches might have a great potential, but we didn't have the time to investigate this path

Thank You!

Wangda Zhang, Paul Mineiro, Shi Qiao, Nasim Ghazanfari, Karlen Lie, Marc Friedman, Rafah Hosn, Hiren Patel, Alekh Jindal, Parimarjan Negi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska