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Share our experience on running a ML-based Query Optimizer Advisor at scale

• How query hints are used to steer query optimizers toward better plans

• How to automate hint generation using ML

• How to scale it over hundreds of thousands of jobs 

• Key lessons learned

Crash Course on Steering Query Optimizers using ML

Goal

What you will learn (Outline)



For more Details



Steering Query Optimizers

The Intuition



Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Optimizer 10,000 feet POV: 
• Rules used to transform query graph
• Rule configuration dictates the search space

Intuition Rule Based Optimizer
Query (job)

Search
A B C

plan

rule



Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Intuition Cheapest Plan
Query

Search
A B C

Query (job)

Optimizer 10,000 feet POV: 
• Rules used to transform query graph
• Rule configuration dictates the search space



Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Intuition What if cheapest plan is not 
optimal?Query

Search
A B C

Not optimal due to mistakes in the heuristics, 
cardinalities, costs, other assumptions

Query (job)
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Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Block bad path

Intuition Disabling Rules

Disable rule

Query

Search
A B C

Query (job)

// optimizer hint disabling rule 20
-optFlags DR(20);

Rule Configuration



Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Intuition Enabling Rules

Enable previously unreachable 
search space

Enable rule

Query

Search
A B C

Query (job)



Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Scope users already use rule hints to fine tune queries:
• Up to ~9% of jobs contain user-provided rule hints
• Difficult to tune, requiring a lot of expertise and experimentation
• Can we automate this at scale?

Query
Intuition Steering Query Optimizer

Search
A B C

Query (job)



Steering Query Optimizers

Core Techniques



Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Core Techniques Rule Signature

Define which rule is actually 
used to reach the final 

query plan

Query

Rule Signature
...

Search
A B C

Query (job)



...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1 

GROUP BY ...;

Core Techniques Rule Signature
Query

Search
A B C

2^256 potential rule signatures. But it has a 
lot of structure!

Define which rule is actually 
used to reach the final 

query plan

Rule Signature
...

Query (job)



Core Techniques Job Span

Set of rules that can change the final query plan
(i.e., the interesting set of rules)

Heuristic iterations

Job Span

...

Rule Signature
...

Optimizer



Steering Query Optimizers

The Automation



Optimizer

Automation As RL Problem



Optimizer

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Automation As RL Problem



Optimizer

Rule Configuration

...

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...



Optimizer Scope Cluster

Job execution

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Rule Configuration

...



Optimizer Scope Cluster

Job execution

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...



Optimizer Scope Cluster

Job execution

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Problems
• We need to provide a reliable, 

scalable, and durable RL Service
• 2^20 is still a large space to explore



Optimizer Scope Cluster

Job execution

Automation As RL Problem

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Solution
• Azure Personalizer
• Contextual bandit over 1-bit 

neighborhood of the span

Azure 
Personalizer



Optimizer Scope Cluster

Job execution

Automation As RL Problem

Azure 
Personalizer

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Problems
• Running new configurations without 

any guardrail is dangerous (e.g., 
regressions)

• Assumption that the optimizer will 
find a new plan with lower cost and 
the lower cost plan will execute faster



Automation Lower Costs are not enough

Slight Correlation: Estimated Cost vs. Latency

Conclusion: We need runtime information to avoid regressions. But …



Automation High Variance makes Learning Difficult

Latency CPU Hours

Run the same job on same data 10 times

5%

5%



Optimizer Scope Cluster

Job execution

Automation As RL Problem

Azure 
Personalizer

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Solution
• Offline A/B testing (under budget)
• Validation model checking that CPU 

Hours + data read and data written 
do not increase substantially



SCOPE 
Optimizer

SCOPE

Execution Job 
RepositoryJob

Automation Let’s make it Concrete



SCOPE 
Optimizer Stats & Insight Service

SCOPE

Execution Job 
Repository

Flighting Service

Job

Automation Let’s make it Concrete

Flighting Service: A/B testing of different query plans

Stats & Insight Service: Serving machine learning models and hints (e.g.,        vs )



Recommendation

SCOPE 
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job 
Repository

Feature 
Generation Recompilation Validation Hint 

Generation

Flighting Service

Azure Personalizer

Job

rule configuration
estimated cost

runtime stats

Automation Let’s make it Concrete
O

ffl
in

e
O

nl
in

e

• Pipeline trained daily on ~5% of Scope jobs
• A pipeline run takes about 24h and about 500 vcores
• For jobs using QO-Advisor, 14% overall improvement in CPU Hours
• Generate ~200k events per day for Azure Personalizer



Steering Query Optimizers

Scaling



Recommendation

SCOPE 
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job 
Repository

Feature 
Generation Recompilation Validation Hint 

Generation

Flighting Service

Azure Personalizer

Job

rule configuration
estimated cost

runtime stats

Scaling Flighting Limitation
O

ffl
in

e
O

nl
in

e

Flighting is limiting the number of jobs we can optimize 
Can we replace offline validation with online randomized A/B testing?



Recommendation

SCOPE 
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job 
Repository

Feature 
Generation Recompilation Validation Hint 

Generation

Flighting Service

Azure Personalizer

Job

rule configuration
estimated cost

runtime stats

Scaling Learning over Repeated Runs



Recommendation

SCOPE 
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job 
Repository

Feature 
Generation Recompilation Randomized 

Deployment
Hint 

Generation

Azure Personalizer

Job

rule configuration estimated cost

configuration

• Informed randomized deployment of configurations
• Risk-adverse contextual bandit

Scaling Learning over Repeated Runs



Performance of a cherry-picked job

normalized_pn = CPU_hours / input_data_size

Hint improves normalized PN
by ~25% for this particular job

Scaling Randomized Online A/B Testing Results

Performance for each unique recurring job

“delta”: lower is better (PN_recommend/PN_default – 1)

Informed randomization + risk-adverse 
algorithm lowers the chances of regressions



• Job Coverage:
• We train over all Scope jobs
• On average, apply hint on 4.84% of recurring jobs

• CPU Hours Improvement:
• For jobs using QO-Advisor, overall improvement: 7.29%
• Small regressions for ~30% jobs

Scaling Summary

Not as high as before due to 
risk-adverse algorithm

More regressions due to online 
exploration  after removing offline 

validation step

• Pipeline runtime and resource utilizations
• From 24h to ~3h
• Only uses vcores for recompilation and generating estimates

• We decided to shut down the project after ~3 years
• Total impact on Scope workload was less than expected
• Regressions were a major source of concern
• Azure Personalizer got discontinued



Conclusion/Key Takeaways

1. This is a hard problem: state-of-the-art optimizers are hard to beat on average

2. Inaccurate cost estimates: can be solved with validation (but it’s expensive)

3. But cannot really ignore cost estimates: ML models make mistakes

4. Noisy performance numbers: ML models have hard time converging

5. Sparse data: This is the cost of safety

6. Online exploration does not work well if you must avoid regressions: Offline 
validation is better (but it’s expensive)

7. Featurization of database jobs: The embedding-based approaches might have 
a great potential, but we didn’t have the time to investigate this path
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