
Running a Query Optimizer Advisor
in Production

What we Learned
(and What the Model didn’t)

Matteo Interlandi

HPTS 2024

Share our experience on running a ML-based Query Optimizer Advisor at scale

• How query hints are used to steer query optimizers toward better plans

• How to automate hint generation using ML

• How to scale it over hundreds of thousands of jobs

• Key lessons learned

Crash Course on Steering Query Optimizers using ML

Goal

What you will learn (Outline)

For more Details

Steering Query Optimizers

The Intuition

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Optimizer 10,000 feet POV:
• Rules used to transform query graph
• Rule configuration dictates the search space

Intuition Rule Based Optimizer
Query (job)

Search
A B C

plan

rule

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Intuition Cheapest Plan
Query

Search
A B C

Query (job)

Optimizer 10,000 feet POV:
• Rules used to transform query graph
• Rule configuration dictates the search space

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Intuition What if cheapest plan is not
optimal?Query

Search
A B C

Not optimal due to mistakes in the heuristics,
cardinalities, costs, other assumptions

Query (job)

5

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Block bad path

Intuition Disabling Rules

Disable rule

Query

Search
A B C

Query (job)

// optimizer hint disabling rule 20
-optFlags DR(20);

Rule Configuration

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Intuition Enabling Rules

Enable previously unreachable
search space

Enable rule

Query

Search
A B C

Query (job)

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Scope users already use rule hints to fine tune queries:
• Up to ~9% of jobs contain user-provided rule hints
• Difficult to tune, requiring a lot of expertise and experimentation
• Can we automate this at scale?

Query
Intuition Steering Query Optimizer

Search
A B C

Query (job)

Steering Query Optimizers

Core Techniques

Optimizer

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Core Techniques Rule Signature

Define which rule is actually
used to reach the final

query plan

Query

Rule Signature
...

Search
A B C

Query (job)

...
Rules

in0 = SELECT * FROM sales WHERE ...;
in1 = SELECT * FROM product WHERE ...;
SELECT A, COUNT(*) FROM in0 JOIN in1

GROUP BY ...;

Core Techniques Rule Signature
Query

Search
A B C

2^256 potential rule signatures. But it has a
lot of structure!

Define which rule is actually
used to reach the final

query plan

Rule Signature
...

Query (job)

Core Techniques Job Span

Set of rules that can change the final query plan
(i.e., the interesting set of rules)

Heuristic iterations

Job Span

...

Rule Signature
...

Optimizer

Steering Query Optimizers

The Automation

Optimizer

Automation As RL Problem

Optimizer

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Automation As RL Problem

Optimizer

Rule Configuration

...

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Optimizer Scope Cluster

Job execution

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Rule Configuration

...

Optimizer Scope Cluster

Job execution

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Optimizer Scope Cluster

Job execution

Automation As RL Problem

RL Agent

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Problems
• We need to provide a reliable,

scalable, and durable RL Service
• 2^20 is still a large space to explore

Optimizer Scope Cluster

Job execution

Automation As RL Problem

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Solution
• Azure Personalizer
• Contextual bandit over 1-bit

neighborhood of the span

Azure
Personalizer

Optimizer Scope Cluster

Job execution

Automation As RL Problem

Azure
Personalizer

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Problems
• Running new configurations without

any guardrail is dangerous (e.g.,
regressions)

• Assumption that the optimizer will
find a new plan with lower cost and
the lower cost plan will execute faster

Automation Lower Costs are not enough

Slight Correlation: Estimated Cost vs. Latency

Conclusion: We need runtime information to avoid regressions. But …

Automation High Variance makes Learning Difficult

Latency CPU Hours

Run the same job on same data 10 times

5%

5%

Optimizer Scope Cluster

Job execution

Automation As RL Problem

Azure
Personalizer

Job metadata,
Plan, Rule signature, Span, etc.

...

Performance results:
Job latency, resources, etc.

Rule Configuration

...

Solution
• Offline A/B testing (under budget)
• Validation model checking that CPU

Hours + data read and data written
do not increase substantially

SCOPE
Optimizer

SCOPE

Execution Job
RepositoryJob

Automation Let’s make it Concrete

SCOPE
Optimizer Stats & Insight Service

SCOPE

Execution Job
Repository

Flighting Service

Job

Automation Let’s make it Concrete

Flighting Service: A/B testing of different query plans

Stats & Insight Service: Serving machine learning models and hints (e.g., vs)

Recommendation

SCOPE
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job
Repository

Feature
Generation Recompilation Validation Hint

Generation

Flighting Service

Azure Personalizer

Job

rule configuration
estimated cost

runtime stats

Automation Let’s make it Concrete
O

ffl
in

e
O

nl
in

e

• Pipeline trained daily on ~5% of Scope jobs
• A pipeline run takes about 24h and about 500 vcores
• For jobs using QO-Advisor, 14% overall improvement in CPU Hours
• Generate ~200k events per day for Azure Personalizer

Steering Query Optimizers

Scaling

Recommendation

SCOPE
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job
Repository

Feature
Generation Recompilation Validation Hint

Generation

Flighting Service

Azure Personalizer

Job

rule configuration
estimated cost

runtime stats

Scaling Flighting Limitation
O

ffl
in

e
O

nl
in

e

Flighting is limiting the number of jobs we can optimize
Can we replace offline validation with online randomized A/B testing?

Recommendation

SCOPE
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job
Repository

Feature
Generation Recompilation Validation Hint

Generation

Flighting Service

Azure Personalizer

Job

rule configuration
estimated cost

runtime stats

Scaling Learning over Repeated Runs

Recommendation

SCOPE
Optimizer Stats & Insight Service

SCOPE

Execution

QO-Advisor

Job
Repository

Feature
Generation Recompilation Randomized

Deployment
Hint

Generation

Azure Personalizer

Job

rule configuration estimated cost

configuration

• Informed randomized deployment of configurations
• Risk-adverse contextual bandit

Scaling Learning over Repeated Runs

Performance of a cherry-picked job

normalized_pn = CPU_hours / input_data_size

Hint improves normalized PN
by ~25% for this particular job

Scaling Randomized Online A/B Testing Results

Performance for each unique recurring job

“delta”: lower is better (PN_recommend/PN_default – 1)

Informed randomization + risk-adverse
algorithm lowers the chances of regressions

• Job Coverage:
• We train over all Scope jobs
• On average, apply hint on 4.84% of recurring jobs

• CPU Hours Improvement:
• For jobs using QO-Advisor, overall improvement: 7.29%
• Small regressions for ~30% jobs

Scaling Summary

Not as high as before due to
risk-adverse algorithm

More regressions due to online
exploration after removing offline

validation step

• Pipeline runtime and resource utilizations
• From 24h to ~3h
• Only uses vcores for recompilation and generating estimates

• We decided to shut down the project after ~3 years
• Total impact on Scope workload was less than expected
• Regressions were a major source of concern
• Azure Personalizer got discontinued

Conclusion/Key Takeaways

1. This is a hard problem: state-of-the-art optimizers are hard to beat on average

2. Inaccurate cost estimates: can be solved with validation (but it’s expensive)

3. But cannot really ignore cost estimates: ML models make mistakes

4. Noisy performance numbers: ML models have hard time converging

5. Sparse data: This is the cost of safety

6. Online exploration does not work well if you must avoid regressions: Offline
validation is better (but it’s expensive)

7. Featurization of database jobs: The embedding-based approaches might have
a great potential, but we didn’t have the time to investigate this path

Thank You!
Wangda Zhang, Paul Mineiro, Shi Qiao, Nasim Ghazanfari, Karlen Lie, Marc Friedman, Rafah Hosn,

Hiren Patel, Alekh Jindal, Parimarjan Negi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska

