It’s NOT all about Deep Learning:
The Case for Simpler Models
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What do Simple Models have to do with Systems?
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Types of ML Models/Frameworks

Deep Neural Network
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Figure 12.2 Deep network architecture with multiple layers.
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Reinforcement Learning in ML
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The Two Sides of Machine Learning

In French “chat
chapeau”

There is a correct answer
Individual features not meaningful
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Answers are probabilistic
Features are meaningful

The Two Sides of Machine Learning
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Will this patient have a seizure?

cat

IN DEFAULT

LGP X | ¥
Who will default on a loan? , ,
Is this person likely to

commit another crime

in the next two years?
5

There is a correct answer
Individual features not meaningful
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Which Kinds of Problems do we Have?
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The Two Sides of Machine Learnin

In French “chat o Answers are probabilistic
chapeau” 74 Features are meaningful
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HPTS 2024 8

There is a correct answer
Individual features not meaningful



Increase Model Complexity?

Deep Neural Network

Transformer neural network architecture of ChatGPT

Input Layer Hidden Layers Output Layer
' N

input layer hidden layer 1 hidden layer2  hidden layer 3

OQut_1
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INPUT UNITS HIDDEN UNITS OUTPUT UNITS .2 Deep network architecture with multiple layers.

models
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Increase Model Complexity?
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Transformer neural network architecture of ChatGPT

models

In cases where 1) Answers are probabilistic, and 2) Features are meaningful

1. Deep learning does NOT help

You do NOT have to sacrifice accuracy to get interpretability.

If you discover that a bunch of different model classes perform
equally well, there is an excellent chance that, you can find a
simple model that is as accurate as any other.
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A Brief Digression

Interpretable Explainable
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The FICO Explainable ML Challenge
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Fast Sparse Classification for Generalized Linear
and Additive Models, Liu, J., Zhong, C., Seltzer,
M., Rudin, C., AISTATS 2020
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The FICO Explainable Al Challenge

External Risk Estimate < 70.5

True alse
Predict default External Risk Estimate < 78.5
T
Months Since Most Recent Inquiry Predict no
Excluding the Last 7days < 0.5 default
T
Percent of Trades w Balance < 73.5 Predict no default
T
Average Months in File < 63.5 Months Since Most Recent Inquiry
Has no Valid Trades

Predict Predict no Predict no  Predict Decision Tree Optimization via Reference
default default default default Ensembles, McTavish, H., Zhong, C.,

Achermann, R., Karimalis, I., Chen, J.,
Rudin, C., Seltzer, M. AAAI-2022.
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Why Does this Work?

1. The Rashomon Effect (Breiman, 2001)

“... there is often a multitude of different descriptions [equations f(x)] in
a class of functions giving about the same minimum error rate.”

2. If many models produce similar accuracy, the Rashomon set
is likely to be large.

3. Large Rashomon ratios make it likely that a simple model
exists.

On the existence of Simpler Machine Learning Models, Semenova, L., Rudin, C., Parr, R., FAccT-2022

12-minute discussion: https://www.youtube.com/watch?v=VEAK{I\VIn\WY
hour-long lecture: hitps://www.youtube.com/watch?v=xZSRN_ kSJUs
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https://www.youtube.com/watch?v=VFAKfIVrnWY
https://www.youtube.com/watch?v=xZSRN_kSJUs

Visually: Rashomon Theory Hypothesis

Rashomon Set

All models

Simple Models
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Finding the Rashomon Set of Decision Trees
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Finding the Whole Rashomon Set of Spare Decision Trees,
HPTS 2024 Xin, R., Zhong, C., Li, B., Seltzer, M., Rudin, C., NeurlPS-2022. 16



Visualizing the Rashomon Set: TimberTrek
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http://127.0.0.1:3000/

Take aways

* Many prediction and classification problems can be solved with
simple models

— The modern tools to build these models are fundamentally more
powerful than the most commonly used heuristic algorithmes.

— The first model you produce is rarely the one you want; demand
many or all the good models, so you can pick one that makes sense
for your problem.



Thank You!

Xiyang Hu Chudi Zhong Jimmy Lin Hayden McTavish
CMU Duke UBC/UofT UBC/Duke
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Duke Duke/UW
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... and many, many undergraduates!
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