It's NOT all about Deep Learning: The Case for Simpler Models

SYSTOPIA

Margo Seltzer Co-Head, Computer Science Canada 150 Research Chair in Computer Systems The University of British Columbia

What do Simple Models have to do with Systems?

Types of ML Models/Frameworks

The Two Sides of Machine Learning

The Two Sides of Machine Learning

Will this patient have a seizure?

Who will default on a loan?

There is a correct answer Individual features not meaningful Color Crimel

Answers are probabilistic

Features are meaningful

Is this person likely to commit another crime in the next two years?

Which Kinds of Problems do we Have?

Which Kinds of Problems do we Have?

The Two Sides of Machine Learning

Increase Model Complexity?

Increase Model Complexity?

In cases where 1) Answers are probabilistic, and 2) Features are meaningful

- 1. Deep learning does **NOT** help
- 2. You do **NOT** have to sacrifice accuracy to get interpretability.
- 3. If you discover that a bunch of different model classes perform equally well, there is an excellent chance that, you can find a simple model that is as accurate as any other.

A Brief Digression

Interpretable

Explainable

The FICO Explainable ML Challenge

HPTS 2024

The FICO Explainable AI Challenge

Why Does this Work?

- 1. The Rashomon Effect (Breiman, 2001)
 - "... there is often a multitude of different descriptions [equations f(x)] in a class of functions giving about the same minimum error rate."
- 2. If many models produce similar accuracy, the Rashomon set is likely to be large.
- 3. Large Rashomon ratios make it likely that a simple model exists.

On the existence of Simpler Machine Learning Models, Semenova, L., Rudin, C., Parr, R., FAccT-2022 12-minute discussion: <u>https://www.youtube.com/watch?v=VFAKfIVrnWY</u> hour-long lecture: <u>https://www.youtube.com/watch?v=xZSRN_kSJUs</u>

Visually: Rashomon Theory Hypothesis

Rashomon Set

Finding the Rashomon Set of Decision Trees

Finding the Whole Rashomon Set of Spare Decision Trees, Xin, R., Zhong, C., Li, B., Seltzer, M., Rudin, C., NeurIPS-2022.

16

Visualizing the Rashomon Set: TimberTrek

Take aways

- Many prediction and classification problems can be solved with simple models
 - The modern tools to build these models are fundamentally more powerful than the most commonly used heuristic algorithms.
 - The first model you produce is rarely the one you want; demand many or **all** the good models, so you can pick one that makes sense for your problem.

Thank You!

Chudi Zhong Duke

Cynthia Rudin Duke

Jimmy Lin UBC/UofT

Hayden McTavish

UBC/Duke

... and many, many undergraduates!