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What do Simple Models have to do with Systems?
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Types of ML Models/Frameworks
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The Two Sides of Machine Learning
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There is a correct answer
Individual features not meaningful
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The Two Sides of Machine Learning

Who will default on a loan?
Is this person likely to 
commit another crime 
in the next two years?

cat

Spain

In French “chat 
chapeau”

Alexa, who won
 the 2023 women’s 

world cup?

Will this patient have a seizure?

There is a correct answer
Individual features not meaningful

Answers are probabilistic
Features are meaningful
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Which Kinds of Problems do we Have?
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Which Kinds of Problems do we Have?
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Increase Model Complexity?

Increasingly complex models

HPTS 2024 9



Increase Model Complexity?

Increasingly complex models

In cases where 1) Answers are probabilistic, and 2) Features are meaningful

1. Deep learning does NOT help
2. You do NOT have to sacrifice accuracy to get interpretability.
3. If you discover that a bunch of different model classes perform 

equally well, there is an excellent chance that, you can find a 
simple model that is as accurate as any other.
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A Brief Digression
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Interpretable Explainable



The FICO Explainable ML Challenge

Fast Sparse Classification for Generalized Linear 
and Additive Models, Liu, J., Zhong, C., Seltzer, 
M., Rudin, C., AISTATS 2020
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The FICO Explainable AI Challenge

Decision Tree Optimization via Reference 
Ensembles, McTavish, H., Zhong, C., 
Achermann, R., Karimalis, I., Chen, J., 
Rudin, C., Seltzer, M. AAAI-2022.
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Why Does this Work?

1. The Rashomon Effect (Breiman, 2001)
“… there is often a multitude of different descriptions [equations f(x)] in 
a class of functions giving about the same minimum error rate.”

2. If many models produce similar accuracy, the Rashomon set 
is likely to be large.

3. Large Rashomon ratios make it likely that a simple model 
exists.

On the existence of Simpler Machine Learning Models, Semenova, L., Rudin, C., Parr, R., FAccT-2022

12-minute discussion: https://www.youtube.com/watch?v=VFAKfIVrnWY
hour-long lecture: https://www.youtube.com/watch?v=xZSRN_kSJUs
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Visually: Rashomon Theory Hypothesis

All models
Simple Models

Rashomon Set
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The best objective 
is 75.9%

Finding the Rashomon Set of Decision Trees

Input Data

I would like models 
within 0.01% of 

optimal

Finding the Whole Rashomon Set of Spare Decision Trees, 
Xin, R., Zhong, C., Li, B., Seltzer, M., Rudin, C., NeurIPS-2022.HPTS 2024 16



Visualizing the Rashomon Set: TimberTrek
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http://127.0.0.1:3000/


Take aways

• Many prediction and classification problems can be solved with 
simple models

– The modern tools to build these models are fundamentally more 
powerful than the most commonly used heuristic algorithms.

– The first model you produce is rarely the one you want; demand 
many or all the good models, so you can pick one that makes sense 
for your problem.
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Thank You!
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My Team

… and many, many undergraduates!
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