
Kyle in Absentia
Jepsen test of Datomic, and Unusual Intra-Transaction Semantics

Adrian Cockcroft (Nubank - advisory role)
HPTS.ws – September 2024

These slides will be shared



Previously…

Screen shots from Jepsen 9: A Fsyncing Feeling - GOTO Chicago 2018 - https://www.youtube.com/watch?v=tRc0O9VgzB0





“A personal failure…”







Jepsen test of Datomic Pro 1.0.7075

• Nubank depends on Datomic backed by AWS DynamoDB to run 
almost all our workloads for over 105 million customers

• 2020 Nubank aquired Cognitect, authors of Clojure and Datomic

• Jepsen.io collaboration with Nubank, initiated and observed by 
Adrian Cockcroft, Kyle worked closely with Dan Aguiar, Guilherme 
Baptista, Stu Halloway, Keith Harper, and Chris Redinger

Full Jepsen Report - https://jepsen.io/blog/2024-05-15-datomic-pro-1.0.7075
Systems Distributed 2024 Talk by Kyle including Datomic https://www.youtube.com/watch?v=ecZp6cWhDjg 

https://jepsen.io/blog/2024-05-15-datomic-pro-1.0.7075
https://www.youtube.com/watch?v=ecZp6cWhDjg


What is Datomic?

• Datomic is a temporal Entity-Attribute-Value OLTP database which 
supports non-interactive transactions on top of pluggable storage 
engines.

• It offers a variety of query mechanisms across thick and thin clients, 
including Datalog, graph traversal, and an ODM-style API.

• At any instant in time, the state of the database is represented by a 
set of [entity, attribute, value] (EAV) triples, known as datoms.

https://datomic.com/
https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model


Jepsen test of Datomic Pro 1.0.7075

We found that Datomic’s inter-transaction safety properties appeared 
stronger than claimed.

Datomic Pro appeared to offer Strong Session Serializable isolation, and 
Strong Serializable for histories restricted to update transactions.
 However, Datomic defines unusual intra-transaction semantics.
While consistent with Datomic’s documentation, this could cause 

invariants preserved by individual transaction functions to be broken 
when those same functions are applied within a single transaction.

https://jepsen.io/blog/2024-05-15-datomic-pro-1.0.7075

Datomic broke Kyle!



How do Datomic Transactions Behave?

• Most OLTP databases offer interactive transactions: one begins a 
transaction, submits an operation, receives results from that 
operation, submits another, and so on before finally committing.

• Datomic does something rather different. It enforces a strict 
separation between read and write paths. There are no interactive 
transactions.



How do Datomic Transactions Work?

• Instead of offering arbitrary return values from transactions, every call 
to transact returns the database state just before the transaction, the 
database state the transaction produced, and the set of datoms the 
transaction expanded to.

• Datomic offers a view of an alternate universe: one where database 
snapshots are cheap, efficient, and can be passed from node to node with 
just a timestamp.

(From this point of view, other databases feel impoverished. What do you mean, 
Postgres can’t give you the state of the entire database a transaction observed?)



Jepsen Report Diagram

However – this diagram 
for Datomic is incorrect…

Datomic does not have 
any operations called 
Add, Retract etc.



Diagram from Nubank Datomic team clarifying the issue





Diagram from Nubank Datomic team showing how it works



Revisions to Datomic Documentation
Following our collaboration, Datomic has made extensive revisions to their documentation.

First, we worked together to rewrite Datomic’s transaction safety documentation. It now reflects the 
stronger safety properties we believe Datomic actually offers: Serializability globally, monotonicity on each 
peer, and Strict Serializability when restricted to writes, or reads which use sync. Datomic also removed the 
“single-writer” argument from their safety documentation.

Datomic’s docs now include a comprehensive explanation of transaction syntax and semantics. It covers the 
structure of transaction requests, the rules for expanding map forms and transaction functions, and the 
process of applying a transaction. Expanded documentation for transaction functions explains Datomic’s 
various mechanisms for ensuring consistency, how to create and invoke functions, and the behavior of built-
in functions. The transaction function documentation no longer says they can be used to “atomically analyze 
and transform database values”, nor does it claim transaction functions can “ensure atomic read-modify-
write processing”.

Datomic has also added documentation arguing for a difference between Datomic transactions and SQL-
style “updating transactions.” There is also a new tech note which discusses the differences between 
transaction functions and entity predicates when composing transactions.

https://docs.datomic.com/pro/transactions/acid.html
https://docs.datomic.com/pro/transactions/transactions.html
https://docs.datomic.com/pro/transactions/transaction-functions.html
https://docs.datomic.com/pro/tech-notes/comparison-with-updating-transactions.html
https://docs.datomic.com/pro/tech-notes/composing-transactions-by-example.html



