Kyle in Absentia

Jepsen test of Datomic, and Unusual Intra-Transaction Semantics

Adrian Cockcroft (Nubank - advisory role)
HPTS.ws — September 2024

These slides will be shared

Previously...

Screen shots from Jepsen 9: A Fsyncing Feeling - GOTO Chicago 2018 - https://www.youtube.com/watch?v=tRc009VgzB0

Cvery < -
' Ii - v Rl'O&K
L\/\/W - IOS'{Z Wl’l'{'vg
CRDTs = safe

Redis Sentel

5\9\ it L)f‘iih/

YV\RSS“Q write ,055

Do\{-‘* ,QSS n't 0\”

write concerns

Cassandro

—LWW write loss
—Row fsolation broken

—Trancction deadlock
data less

NuveDB

Rest CAP by buffer-
-|.Aj 0\” qulug_f{:‘ Ih

\}AM du(;w Pq,{i{”.h

|(WF ca

._’—/

Ta-sync Replica Set
Cohld ,5‘\“‘\'(to Q

Z_OQ‘(E EPQ(‘

\Worlks .

hOJeS/ CO\\IJf:\j Y“S-j

“A personal failure...”
Joss -
e e'l'Cd /C‘m‘“\ | Elas’c-'cmarck
Stale reads [oses documents
every class of partition
Fested.
Rabg\k/‘/\(‘

Aerospilce
Split brein, Pnite Clewns "ACID” ey

Messeye loss YQ“|5 L\I\/W

Elosticsearch |.5.0

I

S-l—(l\ |oses dete

in erery test case

/V\OY\joDB 26‘7

————

S{Rle reedS
ol‘-..{—j reads

(Weonos Pertone. XtrDB/Goler

———

-Rreales torever ofter

|oS'.nj g uofum

- v.S?\RPSl\ o"l s werent

- Firsf- commfte - wing
not Frese rved

-Read (ocks 6 roken

\Volt DB 63

—Stele Feads
“Dir'b reads

— Lost writes

Rethink DB

— Basic tests passed
= R@Con‘ﬁjkra{iu\ Cou/ol

destroy cluster in
fare Coges

Crate.io

-—_Sfu]e, reml;

= ;:B recds

- Loj‘t/ cor(VLP'L VFGLOL'I','QS
— Lo.st hserts

' CocKroachDB

— phantoms

- Daulble inserts

onno
-vQ pmtocnl broken,
‘OSC5 dq‘fa\

_mb\H'iP(t Jata |st bujs

in vl Pro'kml

Aerospike

Cassandra
Chronos
CockroachDB
Crate
Datomic
Dgraph

Elasticsearch
etcd

FaunaDB
Hazelcast

jeted

Kafka

MariaDB Galera
MongoDB

MySQL

NuoDB

Percona XtraDB Cluster
PostgreSQL

RabbitMQ

Radix DLT

RavenDB

Redis

Redis-Raft
Redpanda
RethinkDB

Riak

Scylla
Tendermint
TiDB

VoltDB
YugaByte DB

Zookeeper

2015-05-04
2018-03-07
2013-09-24
2015-08-10
2017-02-16
2016-06-28
2024-05-15
2018-08-23
2020-04-30
2014-06-15
2015-04-27
2014-06-09
2020-01-30
2019-03-05
2017-10-06
2024-08-08
2013-09-24
2015-09-01
2013-05-18
2015-04-20
2017-02-07
2018-10-23
2020-05-15
2023-12-19
2013-09-23
2015-09-04
2020-06-12
2014-06-06
2022-02-05
2024-01-31
2013-05-18
2013-12-10
2020-06-23
2022-04-29
2016-01-04
2016-01-22
2013-05-19
2020-12-23
2017-09-05
2019-06-12
2016-07-12
2019-03-26
2019-09-05
2013-09-23

(U Jepsen test of Datomic Pro 1.0.7075

* Nubank depends on Datomic backed by AWS DynamoDB to run
almost all our workloads for over 105 million customers

* 2020 Nubank aquired Cognitect, authors of Clojure and Datomic

* Jepsen.io collaboration with Nubank, initiated and observed by
Adrian Cockcroft, Kyle worked closely with Dan Aguiar, Guilherme
Baptista, Stu Halloway, Keith Harper, and Chris Redinger

Full Jepsen Report - https://jepsen.io/blog/2024-05-15-datomic-pro-1.0.7075
Systems Distributed 2024 Talk by Kyle including Datomic https://www.youtube.com/watch?v=ecZp6cWhDjg

https://jepsen.io/blog/2024-05-15-datomic-pro-1.0.7075
https://www.youtube.com/watch?v=ecZp6cWhDjg

What is Datomic?

* Datomic is a temporal Entity-Attribute-Value OLTP database which
supports non-interactive transactions on top of pluggable storage
engines.

* |t offers a variety of query mechanisms across thick and thin clients,
including Datalog, graph traversal, and an ODM-style API.

e At any instant in time, the state of the database is represented by a
set of [entity, attribute, value] (EAV) triples, known as datoms.

https://datomic.com/
https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

Jepsen test of Datomic Pro 1.0.7075

We found that Datomic’s inter-transaction safety properties appeared
stronger than claimed.

Datomic Pro appeared to offer Strong Session Serializable isolation, and
Strong Serializable for histories restricted to update transactions.

However, Datomic defines unusual intra-transaction semantics.

While consistent with Datomic’s documentation, this could cause
invariants preserved by individual transaction functions to be broken
when those same functions are applied within a single transaction.

Datomic broke Kyle!

https://jepsen.io/blog/2024-05-15-datomic-pro-1.0.7075

How do Datomic Transactions Behave?

* Most OLTP databases offer interactive transactions: one begins a
transaction, submits an operation, receives results from that
operation, submits another, and so on before finally committing.

 Datomic does something rather different. It enforces a strict
separation between read and write paths. There are no interactive
transactions.

How do Datomic Transactions Work?

* Instead of offering arbitrary return values from transactions, every call
to transact returns the database state just before the transaction, the
database state the transaction produced, and the set of datoms the
transaction expanded to.

* Datomic offers a view of an alternate universe: one where database
snapshots are cheap, efficient, and can be passed from node to node with
just a timestamp.

(From this point of view, other databases feel impoverished. What do you mean,
Postgres can’t give you the state of the entire database a transaction observed?)

Typical Serializable System

/

Transaction 1

Write

~ =
34-%? <——‘Sﬂ
a S g

o =}

DB State 0"

Write

«‘«

g
£
&

/

Transaction 2

Deny

g z) |8
%?4— %’ 4-% |
& 2 &
[S} -

Datomic

DB State 0

[Transaction 1

)

DB State 1

[Transaction 2

+/ \V
&)
v ¥

DB State 2

DB State 0

DB State 0'

Write

Legend

Committed database state,
visible to other transactions

Uncommitted intermediate
state, invisible to other
transactions

Operation within a
transaction

Jepsen Report Diagram

However — this diagram

for Datomic is incorrect...

Datomic does not have
any operations called
Add, Retract etc.

NnuU
. Diagram from Nubank Datomic team clarifying the issue

Datomic has only a single write operation, d/transact. There are no operations named add,
retract, deny, approve, or anything else. Here is an accurate picture, with round boxes
representing write operations:

DB Value 0

The only update “operation” in Datomic that takes a
database + novelty and produces an updated database
is d/transact

DB Value 2

You Have No Interim States? What Do You Have??

Datomic provides two major facilities for composing transactions that depend on the database

state: transaction functions and entity predicates. Transaction functions are pure functions that
have access to db-before (the db value at start of transaction) and expand transaction data not
into a transient database, but into more transaction data:

(tx—fn db-before tx-data) => more-tx—-data

Transaction functions can only possibly take db-before, because db-after does not exist

yet. And transaction functions cannot return db-after, because transaction expansion hasn’t
finished yet!

Entity predicates are predicates? of db-after and an entity id:

(entity-pred db-after entity-id) => bool

The entity-id is a convenience for predicate authors, the important argument is db-after.
Entity predicates have access to the entire database that would result from d/with, and can

reject it for any reason whatsoever. The picture below shows the macro-like expansion of
transaction data.

Diagram from Nubank Datomic team showing how it works

Transaction data is semantically an unordered list of assertions, retractions,
transaction functions and entity predicates. with expands transaction functions, macro-like,
recursively until none remain. Transaction functions have access to the database before the transaction
began. They can perform arbitrary transformations and validations but they cannot
(and could not possibly) validate the entire transaction because it does not exist yet.

validate-order = + { -+ |+ create-order

T
|
I

L

---------------------------- > create-order)

i

v

i '
validate-order create-item

create-item transaction functions expand to
A more transaction data, bottoming
create-item create-item out on assertions and retractions

\
N

\

+
T
!
!
|
|

(tx apply) entity predicates execute after a new (candidate) db-after
H) has been produced. They have access to db-after and
can reject the entire transaction for any arbitrary reason.
The entity predicate validate-order is shown first in the tx data
to emphasize that list order does not matter.

Revisions to Datomic Documentation

Following our collaboration, Datomic has made extensive revisions to their documentation.

First, we worked together to rewrite Datomic’s transaction safety documentation. It now reflects the
stronger safety properties we believe Datomic actually offers: Serializability globally, monotonicity on each
peer, and Strict Serializability when restricted to writes, or reads which use sync. Datomic also removed the
“single-writer” argument from their safety documentation.

Datomic’s docs now include a comprehensive explanation of transaction syntax and semantics. It covers the
structure of transaction requests, the rules for expanding map forms and transaction functions, and the
process of applying a transaction. Expanded documentation for transaction functions explains Datomic’s
various mechanisms for ensuring consistency, how to create and invoke functions, and the behavior of built-
in functions. The transaction function documentation no longer says they can be used to “atomically analyze
and transform database values”, nor does it claim transaction functions can “ensure atomic read-modify-
write processing”.

Datomic has also added documentation arquing for a difference between Datomic transactions and SQL-
style “updating transactions.” There is also a new tech note which discusses the differences between
transaction functions and entity predicates when composing transactions.

https://docs.datomic.com/pro/transactions/acid.html
https://docs.datomic.com/pro/transactions/transactions.html
https://docs.datomic.com/pro/transactions/transaction-functions.html
https://docs.datomic.com/pro/tech-notes/comparison-with-updating-transactions.html
https://docs.datomic.com/pro/tech-notes/composing-transactions-by-example.html

R eo\o\ *H\e c)Ocs

