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Recurrence: A New Database for (Hot) Applications

Revolution

Reconciliation += New Feature

Causes
…
Unstructured Data
Documents
Horizontal Scaling
Machine Learning
…

Reaction
…
NoSQL
XML Databases
MapReduce
Vector Databases
…

 

Emerging pattern: good principles are bound to stay

A Shiny New DBBattle-Tested DB



What Not To Mix: ↑ Complexity + Imperative Queries

Composable & optimizable operators for ML-enhanced analytics
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Execution Optimizations (Additive)

No Filter Pushdown Filter Pushdown 1%

Python +Model Fetch
+C++ (1 thread)

+Pipeline Fusion

+48 threads

Semantic Similarity Join, FastText, 100k x 100k
Γ
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Aggregate

Several orders of 
magnitude! 
1 operator!

Semantic 
Search

Q: Are customers satisfied?

[Analytical Engines With Context-Rich Processing, ICDE’23, TKDE’24]

Ninja User
(or LLM)



Mixed Data Access Paths: A Not-so-Simple Decision
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Query batch size 1 (point lookup) Query batch size 10k (join, batching) 
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Sparse Dense Sparse Dense

Vector-relational processing: new optimizations & design space

Scan

Switch to index

Costly 1-shot reorganization

Dominant dense computation

Switch to index

[Efficient Data Access Paths for Mixed Vector-Relational Search, DAMON’24]



Online Embedding Operator for Context Enrichment
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Input Size (100-D vectors)

Baseline Baseline+SIMD
PrefetchEmbed PrefetchEmbed+SIMD

Tight integration with execution model needed - additive bottlenecks!
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Pairwise comparisons: Nested Loop Similarity Join
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BatchEmbed BatchEmbed+SIMD
Volcano

Embedding batch
1.4x

1.09x

43x

56x
134x

98x

UDF

vs vectorized/compiled execution model

[Optimizing Context-Enhanced Relational Joins, ICDE’24]



Vector Join+Tensor Formulation? A Great GPU Fit! 
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OK! Block Matrix 
Decomposition

A fusion of ML & database principles: logical & physical optimizations  

Transfer
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Compute
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[Optimizing Context-Enhanced Relational Joins, ICDE’24]

DRAM Capacity 
Requirement 

40GB 400GB 4000GB4GB0.4GB



Avoiding Recurrence: The Next (R)evolution of Databases?

Unified mixed vector-relational analytics: vertically optimizable

+
GPUs/xPUs strike back: new movement/computation cost 

+ 
Declarativity must tame the rising query and deployment cost & complexity

Efficient Framework for Structured+Unstructured Data & Queries 

Let’s make this possible! 
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