Go Fast and Don’t Break Things:
Ensuring Quality in the Cloud

Scott Hansma

CTO, Core
Salesforce.com
shansma@salesforce.com
HPTS 2011

Safe Harbor

Safe harbor statement under the Private Securities Litigation Reform Act of 1995:

This presentation may contain forward-looking statements that involve risks, uncertainties, and assumptions. If any such
uncertainties materialize or if any of the assumptions proves incorrect, the results of salesforce.com, inc. could differ materially
from the results expressed or implied by the forward-looking statements we make. All statements other than statements of
historical fact could be deemed forward-looking, including any projections of product or service availability, subscriber growth,
earnings, revenues, or other financial items and any statements regarding strategies or plans of management for future
operations, statements of belief, any statements concerning new, planned, or upgraded services or technology developments
and customer contracts or use of our services.

The risks and uncertainties referred to above include — but are not limited to — risks associated with developing and delivering
new functionality for our service, new products and services, our new business model, our past operating losses, possible
fluctuations in our operating results and rate of growth, interruptions or delays in our Web hosting, breach of our security
measures, the outcome of intellectual property and other litigation, risks associated with possible mergers and acquisitions, the
immature market in which we operate, our relatively limited operating history, our ability to expand, retain, and motivate our
employees and manage our growth, new releases of our service and successful customer deployment, our limited history
reselling non-salesforce.com products, and utilization and selling to larger enterprise customers. Further information on potential
factors that could affect the financial results of salesforce.com, inc. is included in our annual report on Form 10-Q for the most
recent fiscal quarter ended July 31, 2011. This documents and others containing important disclosures are available on the SEC
Filings section of the Investor Information section of our Web site.

Any unreleased services or features referenced in this or other presentations, press releases or public statements are not
currently available and may not be delivered on time or at all. Customers who purchase our services should make the purchase
decisions based upon features that are currently available. Salesforce.com, inc. assumes no obligation and does not intend to
update these forward-looking statements.

The requisite growth slide
(log scale)

More
Less
1999 2011
Every industry presentation has to start with a slide shoyv

itis.

Background on SFDC:

AStarted as a CRM app for sales reps. Always hosted, always multi-tenant.

A Hosted & multi-tenant forced us to provide good APIs and good ways of customizing (e.g. custom
schema through flex fields)

AAbove got good enough that wedre expanded it into a prett
expanding into other areas like customer service

dots:

- when i started at the company / when we pissed off the dalai lama and arnold schwarzenegger in the
same quarter as part of our 100k users celebrations.

- first time i met someone who used sfdc

- when i started just assuming everyone used it

- ceo of much larger company spent 30 minutes of his own keynote bashing us / 575 M transactions per
day.

Why Quality is More Important in the Cloud

0%

100%

A100% of customers on shared instances means good things:

- 0% dev time spent maintaining forks
- 100% of features developed for one customer features available for 100% of customers (if they pay for it)

But:
A0% customers get to opt out of a new version (so we'd better get it right!)

Also:
- 100% (-ish) of our money comes from customers paying us (i.e., not ads etc) and they will pay us 0(%) if
they dondét | ike us. (So wedd better get it rightt!)

And we deliver 3 major releases per year

Winter Spring Summer

The web 2.0 kids may not think of 3 major releases
unheard-of. And even for web 2.0, the amount of change in each release is pretty Impressive.

For example Chatter i our CEO (pictured) decided we should build an employee social network into our
CRM product, so we did.

And we do 400 minor releases a year.

per

Cool Things that
Everyone Can (Should?) Do

Too many tests is a problem too.
And it's a hard problem.

U ' Aot
S
e
f
u
I
n
e
None
S
S Not Enough A Load
Number of Tests
We started out withitwael999% st s (dondt judge

Then we found religion and wrote a bunch of tests. Regressions plummet, life is great.

Then we pass some tipping point where we have so many tests (including some poorly written ones) that
every test run produces a ton of failures. Devs stop paying attention. Regressions skyrocket, life is bad.

And to make matters worse, we have so many tests that we
them all.

So we developed a system that eventually grew intoé

« Run entire suite of tests on n changelists
— Multiple suites along spectrum of fast-complete.
— Parallelized across 10-80 VMs (in DB + app pairs) depending on suite size.

+ Compare results to previous run.

+ For the set of newly failing tests:
— Rerun immediately. If a test now passes, it's a flapper. File a bug to test author.

— Binary search across sets of changelists to pinpoint cause of each test failure.
File a bug to changelist author (or re-open closed bug).

« For all newly passing tests:

— Mark the associated bug fixed (except flappers)
« Throw away all the VMs

— So tests always start in a clean state.

Get excited! A slide with actual content!
It should have been a flowchart, but | hate drawing flowcharts in PPT.
(walk through bullets)

This greatly reduces the capacity problem by
even trade off time to results because you can now parallelize the test running.

AFl appero = poorly written test that d@Afl apso
concurrency design in test, timeouts, assumptions about contents of database.

This solves the relevancy problem by only showing devs the tests they broke.

(done walking through bullets)

reducing

bet ween

Numbers: Approx 150k test cases, 600 checkins per day, 3000 VMs. Currently on VMW are because we

started this whole thing before AWS, but we have an AWS prototype running.

All custom built because we started work on it before Hudson/Jenkins was around, but also because as far
as we can tell, this system is pretty novel with the tight bug integration and the failure pinpointing and all
that . I f we were starting today, wedd probably base

for converting.

t

he

passi

t

on

Static Analysis for Databases

SELECT /*+ ORDERED USE_HASH(o) */ t.organization_id, t.${pk} AS
entity_id, ${name_col}

FROM ${table} ${table_partition} t, core.organization
${organization_partition} o

WHERE t.organization_id = o.organization_id
${getOrgldFilter(“t")}

MINUS

SELECT n.organization_id, n.entity_id, ${name_col}
FROM core.name_denorm ${denorm_partition}
WHERE ${key_prefix_clause}

${getOrgldFilter(*n™)};

Tests are great but you typically have to write new tests for each new piece of code.

Which is why we all know static analysis is awesome. We think it is too. We use FindBugs for Java just like
everyone else and itodés great.

Scrutiny: our own tool. Database invariants in the form of queries that should return O rows. This example
here is for checking that our denormalizedt abl e f or name | ookup is in sync with
parameterized such that you can run it for a particular organization (our term for tenant) or a particular
database partition or the whole database. We run these in production but also after every functional test

class to find bugs the developers didnoét ©ddvs nk to test fo
someti mes donét take the failures seriously, so it really
above.

We 6 ve al s dindBugs equivelent far our stored procedure code (which we have a ton of). It checks
for stuff like properly hinting and using indexes, as well as salesforce-specific things like keeping pairs of
related columns in sync and properly using session state. It also runs on dynamic SQL at runtime during
functional test runs, which is cool.

Every good presentation needs one of those "pick 2 of 3" engineering trade offs, which | have in the next
slide.

APl Versions and Gold Files

Right

Right Wrong

Pick any
Two

This next one is a little more subtle. Any behavior change in a public API, **even to fix a bug** can break a

customerds integration, and thus is a bug in itself.
To reiterate from the start of the talk: this is criticall
opt out of a release, so we candt ask them to change thei

Every API is versioned. No destructive behavior changes without a version number change. We support
old APIs for far far too long.

Gold files: Query all our APIs and all versions and dump the results to a file.
We run that test on every checkin and make a human approve any changes by checking in a new gold file.

(Valid changes include new fields or objects added to APIs, potentially other changes depending on the
APl 6s contract).

Cool Things that Only Cloud
Providers Can Do

Before the Release:
Apex & Report Hammers

Image: scrapstothefutureffiickr

Apex is our stored procedure | anguage. If | say call it a
dondét ask the completely reasonable fAwhy the hell would vy
types freak out because you could write your whole app in Apex (and people do).

Something awesome you can only do as a cloud vendor: Run ALL customer-written apex tests with and
wi t hout major code change. For this release weobdre pilotin
found over 500 issues that we fixed before production. Last release was over 300 bugs.

Same story for our report hammer, which runs all the reports that all our customers have defined to look for
performance (often an issue) and correctness (rarely an issue).

Runs on copy of production data (in prod data centers; no dev access to customer data!). Devs only see

probl em/ no problem, not results of rchepkmmrThaswooldbeApex test s.
nice but basically i mpossible (wedbd have to upgrade 100s
checkin!!)

Reiterate: as a customer, all your tests get run before an upgrade and then we fix any bugs that we

uncover before we releadetchaihanm&® DPoeatdtty ydammwi sthholyour OS/
vendor did that for you?

After the Release: Gack Watching

Image: Dylan Ashe

fiGacko salesforcet er m f or exception i n p mis-ckmembering of whafBillthen our f ound e
Cat says (he A Aekejyually says i

Whenever a new exception happens in production, we automatically file a bug and so can fix it without
customers seeing the issue.

Wedve spent a bunch of ti me t weakigadk Mboshexcemionaada mappi ng frc

real problem and we need to fix it. Some (for example con
we suppress altogether. Others (socket timeouts that wildl
can see the details, but either donodt al ethreshholdai because it

Lots of people have written about the ins and outs of setting up production monitoring and alerts.

Keeping us Committed: trust.salesforce.com

Service Performance History

« Instance available @ Performance issues © Service disruption # Informational message © Status not available
Updated 10/21/2011 3:10 pm POT | M System Status 3
10/21/11 10/20/11 10/19/11 10/1B/11 10/17/11 10/16/11 m,usfu
APO (Japan) v < +] v " o« v a
AP1 (APAC) v v v v v v v v 5]
EUO (EMEA) v v v v v v v v a
Eul v v v v v v v v 5]
NAD (s5L) v < v v v v v v a
NAL v v v v v o v v a
NAZ v v v v v < v v 5]
NA3 v v - v v o - < a
NAa v v v v v v v v 5]
NAS v v v v v v v v a
NAG v v v v v v v v 5]
NAZ v v < v v v < J a
NAB v v v v v & v v a
NAS v v v v v v v v 5]
HALD v v v v v v v v 5]
NALL v v v v v v v v 5]
NA12 v v v v v v v v 5]
cs0 (TAPPO) v < - v v v - v 2
cs1 v v v v v v v v]
cs2 v v v v v v v v a
cs3 v v b4 v v 24 b4 o a
csa v v v v v v v v a
css v v v v v & v v a
cs6 v v v v v v v v 5]
cs7 v v v v v v v v 5]
css v v v v v v v v]
cs9 v v v v v v v v 5]
cs10 < v - v v v + v 5]
cs11 v v v v v = v v a
512 v v v v v v v v 2]

400,096,472 517,681,608 585,906,430 550,810,483 566,347,376 199,252,080 225,404,207

vy, Specd (seconds) RIEL 0,343 0348 0381 0572 0,258 ozs0

ACreated in response to serious site problems back in 2006.

AMade customers feel good because they could see how we were doing against our promise to work on
problems.

AMore important: forces us to pay attention to availability and performance ongoing; otherwise it's easy for
the company to let it slide

ANice side benefit: makes outages not news

AYoudl |l notice thereds one blue dot and one red dot in the
disruption. Blue dot means performance issue, which we take as seriously as outages. We feel bad about
these dots, but wedre open about it because it builds tru

service is architected, each of those dots only correspon
too. But thatds another talk.

Thank you

Summary slide

Any questions?

