

Every industry presentation has to start with a slide showing the staggering scale theyôve grown to, so here

it is.

Background on SFDC:

ÅStarted as a CRM app for sales reps. Always hosted, always multi-tenant.

Å Hosted & multi-tenant forced us to provide good APIs and good ways of customizing (e.g. custom

schema through flex fields)

Å Above got good enough that weôre expanded it into a pretty successful platform business, as well as

expanding into other areas like customer service

dots:

- when i started at the company / when we pissed off the dalai lama and arnold schwarzenegger in the

same quarter as part of our 100k users celebrations.

- first time i met someone who used sfdc

- when i started just assuming everyone used it

- ceo of much larger company spent 30 minutes of his own keynote bashing us / 575 M transactions per

day.

Å100% of customers on shared instances means good things:

- 0% dev time spent maintaining forks

- 100% of features developed for one customer features available for 100% of customers (if they pay for it)

But:

Å0% customers get to opt out of a new version (so we'd better get it right!)

Also:

- 100% (-ish) of our money comes from customers paying us (i.e., not ads etc) and they will pay us 0(%) if

they donôt like us. (So weôd better get it right!)

The web 2.0 kids may not think of 3 major releases per year as a lot, but for enterprise software, itôs

unheard-of. And even for web 2.0, the amount of change in each release is pretty Impressive.

For example Chatter ï our CEO (pictured) decided we should build an employee social network into our

CRM product, so we did.

And we do 400 minor releases a year.

We started out with no tests (donôt judge ï it was 1999).

Then we found religion and wrote a bunch of tests. Regressions plummet, life is great.

Then we pass some tipping point where we have so many tests (including some poorly written ones) that

every test run produces a ton of failures. Devs stop paying attention. Regressions skyrocket, life is bad.

And to make matters worse, we have so many tests that we canôt keep adding hardware fast enough to run

them all.

So we developed a system that eventually grew intoé

Get excited! A slide with actual content!

It should have been a flowchart, but I hate drawing flowcharts in PPT.

(walk through bullets)

This greatly reduces the capacity problem by reducing the amount of work needed to run all tests. Doesnôt

even trade off time to results because you can now parallelize the test running.

ñFlapperò = poorly written test that ñflapsò between passing and failing. Some common causes are bad

concurrency design in test, timeouts, assumptions about contents of database.

This solves the relevancy problem by only showing devs the tests they broke.

(done walking through bullets)

Numbers: Approx 150k test cases, 600 checkins per day, 3000 VMs. Currently on VMWare because we

started this whole thing before AWS, but we have an AWS prototype running.

All custom built because we started work on it before Hudson/Jenkins was around, but also because as far

as we can tell, this system is pretty novel with the tight bug integration and the failure pinpointing and all

that. If we were starting today, weôd probably base it on Jenkins, but right now thereôs not a sufficient ROI

for converting.

Tests are great but you typically have to write new tests for each new piece of code.

Which is why we all know static analysis is awesome. We think it is too. We use FindBugs for Java just like

everyone else and itôs great.

Scrutiny: our own tool. Database invariants in the form of queries that should return 0 rows. This example

here is for checking that our denormalized table for name lookup is in sync with all the main tables. Itôs

parameterized such that you can run it for a particular organization (our term for tenant) or a particular

database partition or the whole database. We run these in production but also after every functional test

class to find bugs the developers didnôt think to test for. Finds a ton of stuff. Downside is that devs

sometimes donôt take the failures seriously, so it really benefits from the targeted assignment described

above.

Weôve also written a FindBugs equivalent for our stored procedure code (which we have a ton of). It checks

for stuff like properly hinting and using indexes, as well as salesforce-specific things like keeping pairs of

related columns in sync and properly using session state. It also runs on dynamic SQL at runtime during

functional test runs, which is cool.

Every good presentation needs one of those "pick 2 of 3" engineering trade offs, which I have in the next

slide.

This next one is a little more subtle. Any behavior change in a public API, **even to fix a bug** can break a

customerôs integration, and thus is a bug in itself.

To reiterate from the start of the talk: this is critically important for cloud providers because customers canôt

opt out of a release, so we canôt ask them to change their integration before they upgrade.

Every API is versioned. No destructive behavior changes without a version number change. We support

old APIs for far far too long.

Gold files: Query all our APIs and all versions and dump the results to a file.

We run that test on every checkin and make a human approve any changes by checking in a new gold file.

(Valid changes include new fields or objects added to APIs, potentially other changes depending on the

APIôs contract).

Apex is our stored procedure language. If I say call it a ñstored procedure languageò then technical types

donôt ask the completely reasonable ñwhy the hell would you write your own languageò but marketing

types freak out because you could write your whole app in Apex (and people do).

Something awesome you can only do as a cloud vendor: Run ALL customer-written apex tests with and

without major code change. For this release weôre piloting a complete rewrite of our interpreter and it

found over 500 issues that we fixed before production. Last release was over 300 bugs.

Same story for our report hammer, which runs all the reports that all our customers have defined to look for

performance (often an issue) and correctness (rarely an issue).

Runs on copy of production data (in prod data centers; no dev access to customer data!). Devs only see

problem/no problem, not results of reports or Apex tests. Doesnôt run with every checkin. That would be

nice but basically impossible (weôd have to upgrade 100s of TB of relational databases with every

checkin!!)

Reiterate: as a customer, all your tests get run before an upgrade and then we fix any bugs that we

uncover before we release. Thatôs pretty damn cool, dontcha think? Donôt you wish your OS/Database/etc

vendor did that for you?

ñGackò = salesforce term for exception in production; from our founderôs mis-remembering of what Bill the

Cat says (he actually says ñAckò).

Whenever a new exception happens in production, we automatically file a bug and so can fix it without

customers seeing the issue.

Weôve spent a bunch of time tweaking the exact mapping from exception to gack. Most exceptions are a

real problem and we need to fix it. Some (for example connection resets while weôre taking down a server)

we suppress altogether. Others (socket timeouts that will be retried) we log so that if thereôs a problem we

can see the details, but either donôt alert on because itôs not a problem or only alert above a threshhold.

Lots of people have written about the ins and outs of setting up production monitoring and alerts.

Å Created in response to serious site problems back in 2006.

Å Made customers feel good because they could see how we were doing against our promise to work on

problems.

Å More important: forces us to pay attention to availability and performance ongoing; otherwise it's easy for

the company to let it slide

ÅNice side benefit: makes outages not news

Å Youôll notice thereôs one blue dot and one red dot in the picture. Red dot means some kind of service

disruption. Blue dot means performance issue, which we take as seriously as outages. We feel bad about

these dots, but weôre open about it because it builds trust in the cloud. And because of the way our

service is architected, each of those dots only corresponds to maybe 5% of our customers, so thatôs nice

too. But thatôs another talk.

Summary slide

Any questions?

